Memory & Cognition

, Volume 38, Issue 6, pp 700–712 | Cite as

North is up(hill): Route planning heuristics in real-world environments

  • Tad T. Brunyé
  • Caroline R. Mahoney
  • Aaron L. Gardony
  • Holly A. Taylor
Article

Abstract

Navigators use both external cues and internal heuristics to help them plan efficient routes through environments. In six experiments, we discover and seek the origin of a novel heuristic that causes participants to preferentially choose southern rather than northern routes during map-based route planning. Experiment 1 demonstrates that participants who are tasked to choose between two equal-length routes, one going generally north and one south, show reliable decision preferences toward the southern option. Experiment 2 demonstrates that participants produce a southern preference only when instructed to adopt egocentric rather than allocentric perspectives during route planning. In Experiments 3-5, we examined participants’ judgments of route characteristics and found that judgments of route length and preferences for upper relative to lower path options do not contribute to the southern route preference. Rather, the southern route preference appears to be a result of misperceptions of increased elevation to the north (i.e., north is up). Experiment 6 further supports this finding by demonstrating that participants provide greater time estimates for north- than for equivalent south-going routes when planning travel between U.S. cities. Results are discussed with regard to predicting wayfinding behavior, the mental simulation of action, and theories of spatial cognition and navigation.

References

  1. Bailenson, J. N., Shum, M. S., & Uttal, D. H. (1998). Road climbing: Principles governing asymmetric route choices on maps. Journal of Environmental Psychology, 18, 251–264.CrossRefGoogle Scholar
  2. Bailenson, J. N., Shum, M. S., & Uttal, D. H. (2000). The initial segment strategy: A heuristic for route selection. Memory & Cognition, 28, 306–318.CrossRefGoogle Scholar
  3. Barsalou, L. W. (2008). Grounded cognition. Annual Review of Psychology, 59, 617–645.CrossRefPubMedGoogle Scholar
  4. Benshoof, J. A. (1970). Characteristics of drivers’ route selection behavior. Traffic Engineering & Control, 11, 604–606.Google Scholar
  5. Bovy, P. H. L., & Stern, E. (1990). Route choice: Wayfinding in transport networks. Transportation Research Part A: Policy & Practice, 27, 338–339.Google Scholar
  6. Brunyé, T. T., Ditman, T., Mahoney, C. R., Augustyn, J. S., & Taylor, H. A. (2009). When you and I share perspectives: Pronouns modulate perspective-taking during narrative comprehension. Psychological Science, 20, 27–32.CrossRefPubMedGoogle Scholar
  7. Brunyé, T. T., Rapp, D. N., & Taylor, H. A. (2008). Representational flexibility and specificity following spatial descriptions of real world environments. Cognition, 108, 418–443.CrossRefPubMedGoogle Scholar
  8. Brunyé, T. T., & Taylor, H. A. (2008a). Extended experience benefits spatial mental model development with route but not survey descriptions. Acta Psychologica, 127, 340–354.CrossRefPubMedGoogle Scholar
  9. Brunyé, T. T., & Taylor, H. A. (2008b). Working memory in developing and applying mental models from spatial descriptions. Journal of Memory & Language, 58, 701–729.CrossRefGoogle Scholar
  10. Brunyé, T. T., & Taylor, H. A. (2009). When goals constrain: Eye movements and memory for goal-oriented map study. Applied Cognitive Psychology, 23, 772–787.CrossRefGoogle Scholar
  11. Christenfeld, N. (1995). Choices from identical options. Psychological Science, 6, 50–55.CrossRefGoogle Scholar
  12. Conroy Dalton, R. (2003). The secret is to follow your nose: Route path selection and angularity. Environment & Behavior, 35, 107–131.CrossRefGoogle Scholar
  13. Ditman, T., Brunyé, T. T., Mahoney, C. R., & Taylor, H. A. (2010). Simulating an enactment effect: Pronouns guide action simulation during narrative comprehension. Cognition, 115, 172–178.CrossRefPubMedGoogle Scholar
  14. Fajen, B. R. (2005). Perceiving possibilities for action: On the necessity of calibration and perceptual learning for the visual guidance of action. Perception, 34, 717–740.CrossRefPubMedGoogle Scholar
  15. Fincher-Kiefer, R. (2001). Perceptual components of situation models. Memory & Cognition, 29, 336–343.CrossRefGoogle Scholar
  16. Fischer, M. H., & Zwaan, R. A. (2008). Embodied language: A review of the role of the motor system in language comprehension. Quarterly Journal of Experimental Psychology, 61, 825–850.CrossRefGoogle Scholar
  17. Freksa, C. (1999). Spatial aspects of task-specific wayfinding maps. In J. S. Gero & B. Tversky (Eds.), Visual and spatial reasoning in design (pp. 15-32). University of Sydney: Key Centre of Design Computing and Cognition.Google Scholar
  18. Fuller, R., Gormley, M., Stradling, S., Broughton, P., Kinnear, N., O’Dolan, C., & Hannigan, B. (2009). Impact of speed change on estimated journey time: Failure of drivers to appreciate relevance of initial speed. Accident Analysis & Prevention, 41, 10–14.CrossRefGoogle Scholar
  19. Gärling, T., & Gärling, E. (1988). Distance minimization in downtown pedestrian shopping. Environment & Planning A, 20, 547–554.CrossRefGoogle Scholar
  20. Gärling, T., Lindberg, E., & Mäntylä, T. (1983). Orientation in buildings: Effects of familiarity, visual access, and orientation aids. Journal of Applied Psychology, 68, 177–186.CrossRefPubMedGoogle Scholar
  21. Glenberg, A. M. (2007). Language and action: Creating sensible combinations of ideas. In G. Gaskell (Ed.), The Oxford handbook of psycholinguistics (pp. 361–370). Oxford: Oxford University Press.Google Scholar
  22. Glenberg, A. M., & Kaschak, M. P. (2002). Grounding language in action. Psychonomic Bulletin & Review, 9, 558–565.CrossRefGoogle Scholar
  23. Golledge, R. (1995). Path selection and route preference in human navigation: A progress report. In A. U. Frank & W. Kuhn (Eds.), Spatial information theory: A theoretical basis for GIS (COSIT ’95) (Lecture Notes in Computer Science, No. 988, pp. 207–222). Berlin: Springer.Google Scholar
  24. Golledge, R. (1999). Wayfinding behavior: Cognitive mapping and other spatial processes. Baltimore: Johns Hopkins University Press.Google Scholar
  25. Heth, C. D., & Cornell, E. H. (1998). Characteristics of travel by persons lost in Albertan wilderness areas. Journal of Environmental Psychology, 18, 223–235.CrossRefGoogle Scholar
  26. Hochmair, H. H., & Frank, A. U. (2002). Influence of estimation errors on wayfinding decisions in unknown street networks—Analyzing the least-angle strategy. Spatial Cognition & Computation, 2, 283–313.Google Scholar
  27. Hochmair, H. H., & Karlsson, V. (2005). Investigation of preference between the least-angle strategy and the initial segment strategy for route selection in unknown environments. In C. Freksa, M. Knauff, B. Krieg-Brückner, B. Nebel, & T. Barkowskey (Eds.), Spatial cognition IV (LNAI 3343, pp. 79–97). Berlin: Springer.Google Scholar
  28. Hölscher, C., Meilinger, T., Vrachliotis, G., Brösamle, M., & Knauff, M. (2006). Up the down staircase: Wayfinding strategies in multi-level buildings. Journal of Environmental Psychology, 26, 284–299.CrossRefGoogle Scholar
  29. Jacoby, H. (1917). Navigation. New York: MacMillan.Google Scholar
  30. Janzen, G., Herrmann, T., Katz, S., & Schweizer, K. (2000). Oblique angled intersections and barriers: Navigating through a virtual maze. In C. Freksa, W. Brauer, & K. F. Wender (Eds.), Spatial Cognition II (LNCS 1849, pp. 277–294). Berlin: Springer.CrossRefGoogle Scholar
  31. Jeannerod, M. (2001). Neural simulation of action: A unifying mechanism for motor cognition. NeuroImage, 14, S103-S109.CrossRefPubMedGoogle Scholar
  32. Knoblich, G., & Flach, R. (2001). Predicting the effects of actions: Interactions of perception and action. Psychological Science, 12, 467–472.CrossRefPubMedGoogle Scholar
  33. Kuipers, B. (2000). The spatial semantic hierarchy. Artificial Intelligence, 119, 191–233.CrossRefGoogle Scholar
  34. Kwon, J. C., Lee, B. H., Ji, J. M., Jeong, Y., Kim, B. J., Heilman, K. M., & Na, D. L. (2004). Length perception and production of normal subjects in proximal versus distal peripersonal space. Journal of the International Neuropsychological Society, 10, 913–919.CrossRefPubMedGoogle Scholar
  35. Levelt, W. J. M. (1982). Cognitive styles in the use of spatial direction terms. In R. J. Jarvella & W. Klein (Eds.), Speech, place and action. Studies in deixis and related topics (pp. 251–268). Chichester: Wiley.Google Scholar
  36. Levine, M. (1982). You-are-here maps: Psychological considerations. Environment & Behavior, 14, 221–237.CrossRefGoogle Scholar
  37. Magliano, J. P., Cohen, R., Allen, G. L., & Rodrigue, J. R. (1995). The impact of a wayfinder’s goal on learning a new environment: Different types of spatial knowledge as goals. Journal of Environmental Psychology, 15, 65–75.CrossRefGoogle Scholar
  38. Montello, D. R. (1998). A new framework for understanding the acquisition of spatial knowledge in large-scale environments. In M. J. Egenhofer & R. G. Golledge (Eds.), Spatial and temporal reasoning in geographic information systems (pp. 143–154). New York: Oxford University Press.Google Scholar
  39. Montello, D. R. (2005). Navigation. In P. Shah & A. Miyake (Eds.), The Cambridge handbook of visuospatial thinking (pp. 257–294). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  40. Newcombe, N., Huttenlocher, J., Sandberg, E., & Lie, E. (1996). What do asymmetries in judgment indicate about representation? The case of spatial estimation. Paper presented at the 37th Annual Meeting of the Psychonomic Society, Chicago.Google Scholar
  41. Pazzaglia, F., & De Beni, R. (2001). Strategies of processing spatial information in survey and landmark-centred individuals. European Journal of Cognitive Psychology, 13, 493–508.Google Scholar
  42. Proffitt, D. R. (2006). Embodied perception and the economy of action. Perspectives on Psychological Science, 1, 110–122.CrossRefGoogle Scholar
  43. Raubal, M. (2002). Wayfinding in built environments: The case of airports. Solingen, Germany: Natur & Wissenschaft.Google Scholar
  44. Richardson, D. C., Spivey, M. J., Barsalou, L. W., & McRae, K. (2003). Spatial representations activated during real-time comprehension of verbs. Cognitive Science, 27, 767–780.CrossRefGoogle Scholar
  45. Ruby, P., & Decety, J. (2001). Effect of subjective perspective taking during simulation of action: A PET investigation of agency. Nature Neuroscience, 4, 546–550.PubMedGoogle Scholar
  46. Sadalla, E. K., & Staplin, L. J. (1980). The perception of traversed distance: Intersections. Environment & Behavior, 12, 167–182.CrossRefGoogle Scholar
  47. Scharine, A. A., & McBeath, M. K. (2002). Right-handers and Americans favor turning to the right. Human Factors, 44, 248–256.CrossRefPubMedGoogle Scholar
  48. Seeley, W. P., & Waughtel, J. (2008). Motor simulation & the effects of energetic & emotional costs of depicted actions in picture perception. Journal of Vision, 8(6), 1041.CrossRefGoogle Scholar
  49. Selten, R., Chmura, T., Pitz, T., Kube, S., & Schreckenberg, M. (2007). Commuters route choice behavior. Games & Economic Behavior, 58, 394–406.CrossRefGoogle Scholar
  50. Seneviratne, P. N., & Morrall, J. F. (1986). Analysis of factors affecting the choice of route of pedestrians. Transportation Planning & Technology, 10, 147–159.CrossRefGoogle Scholar
  51. Shum, M. S., Bailenson, J., Hwang, S., Piland, L., & Uttal, D. (1998). Road climbing: Principles of route choice. In Proceedings of the 20th Annual Conference of the Cognitive Science Society. Mahwah, NJ: Erlbaum.Google Scholar
  52. Svenson, O. (2008). Decisions among time saving options: When intuition is strong and wrong. Acta Psychologica, 127, 501–509.CrossRefPubMedGoogle Scholar
  53. Taylor, H. A., Naylor, S. J., & Chechile, N. A. (1999). Goal-specific influences on the representation of spatial perspective. Memory & Cognition, 27, 309–319.CrossRefGoogle Scholar
  54. Taylor, H. A., & Tversky, B. (1992a). Descriptions and depictions of environments. Memory & Cognition, 20, 483–496.CrossRefGoogle Scholar
  55. Taylor, H. A., & Tversky, B. (1992b). Spatial mental models derived from survey and route descriptions. Journal of Memory & Language, 31, 261–292.CrossRefGoogle Scholar
  56. Tversky, A. (1977). Features of similarity. Psychological Review, 84, 327–352.CrossRefGoogle Scholar
  57. Tversky, A., & Kahneman, D. (1983). Extensional versus intuitive reasoning: The conjunction fallacy in probability judgment and choice. Psychological Review, 90, 293–315.CrossRefGoogle Scholar
  58. Tversky, B. (2009). Spatial cognition: Embodied and situated. In P. Robbins & M. Aydede (Eds.), The Cambridge handbook of situated cognition (pp. 201–217). Cambridge: Cambridge University Press.Google Scholar
  59. Ueberschaer, M. H. (1971). Choice of routes on urban networks for the journey to work. Highway Research Record, 369, 228–238.Google Scholar
  60. van Asselen, M., Fritschy, E., & Postma, A. (2006). The influence of intentional and incidental learning on acquiring spatial knowledge during navigation. Psychological Research, 70, 151–156.CrossRefPubMedGoogle Scholar
  61. Weisman, J. (1981). Evaluating architectural legibility: Way-finding in the built environment. Environment & Behavior, 13, 189–204.CrossRefGoogle Scholar
  62. Wiener, J. M., Lafon, M., & Berthoz, A. (2008). Path planning under spatial uncertainty. Memory & Cognition, 36, 495–504.CrossRefGoogle Scholar
  63. Wiener, J. M., & Mallot, H. A. (2003). “Fine-to-coarse” route planning and navigation in regionalized environments. Spatial Cognition & Computation, 3, 331–358.CrossRefGoogle Scholar
  64. Wiener, J. M., Schnee, A., & Mallot, H. A. (2004). Use and interaction of navigation strategies in regionalized environments. Journal of Environmental Psychology, 24, 475–493.Google Scholar
  65. Witt, J. K., & Proffitt, D. R. (2008). Action-specific influences on distance perception: A role for motor simulation. Journal of Experimental Psychology: Human Perception & Performance, 34, 1479–1492.CrossRefGoogle Scholar
  66. Witt, J. K., Proffitt, D. R., & Epstein, W. (2004). Perceiving distance: A role of effort and intent. Perception, 33, 570–590.CrossRefGoogle Scholar
  67. Yoshino, R. (1991). A note on cognitive maps: An optimal spatial knowledge representation. Journal of Mathematical Psychology, 35, 371–393.CrossRefGoogle Scholar

Copyright information

© Psychonomic Society, Inc. 2010

Authors and Affiliations

  • Tad T. Brunyé
    • 1
    • 2
  • Caroline R. Mahoney
    • 1
    • 2
  • Aaron L. Gardony
    • 1
    • 2
  • Holly A. Taylor
    • 2
  1. 1.Development and Engineering CenterU.S. Army Natick Soldier ResearchNatick
  2. 2.Department of PsychologyTufts UniversityMedford

Personalised recommendations