Memory & Cognition

, Volume 38, Issue 2, pp 163–175 | Cite as

Musicians' and nonmusicians' short-term memory for verbal and musical sequences: Comparing phonological similarity and pitch proximity

  • Victoria J. Williamson
  • Alan D. Baddeley
  • Gramham J. Hitch
Article
  • 2.8k Downloads

Abstract

Language-music comparative studies have highlighted the potential for shared resources or neural overlap in auditory short-term memory. However, there is a lack of behavioral methodologies for comparing verbal and musical serial recall. We developed a visual grid response that allowed both musicians and nonmusicians to perform serial recall of letter and tone sequences. The new method was used to compare the phonological similarity effect with the impact of an operationalized musical equivalent — pitch proximity. Over the course of three experiments, we found that short-term memory for tones had several similarities to verbal memory, including limited capacity and a significant effect of pitch proximity in nonmusicians. Despite being vulnerable to phonological similarity when recalling letters, however, musicians showed no effect of pitch proximity, a result that we suggest might reflect strategy differences. Overall, the findings support a limited degree of correspondence in the way that verbal and musical sounds are processed in auditory short-term memory.

References

  1. Anvari, S. H., Trainor, L. J., Woodside, J., &Levy, B. A. (2002). Relations among musical skills, phonological processing, and early reading ability in preschool children.Journal of Experimental Child Psychology,83, 111–130. doi:10.1016/S0022-0965(02)00124-8CrossRefPubMedGoogle Scholar
  2. Ayotte, J., Peretz, I., &Hyde, K. (2002). Congenital amusia: A group study of adults afflicted with a music-specific disorder.Brain,125, 238–251. doi:10.1093/brain/awf028CrossRefPubMedGoogle Scholar
  3. Baddeley, A. D. (1966). The influence of acoustic and semantic similarity on long-term memory for word sequences.Quarterly Journal of Experimental Psychology,18, 302–309.CrossRefPubMedGoogle Scholar
  4. Baddeley, A. [D.] (2000). The episodic buffer: A new component of working memory?Trends in Cognitive Sciences,4, 417–423. doi:10.1016/S1364-6613(00)01538-2CrossRefPubMedGoogle Scholar
  5. Baddeley, A. [D.] (2007).Working memory, thought, and action. Oxford: Oxford University Press.Google Scholar
  6. Baddeley, A. [D.], Chincotta, D., &Adlam, A. (2001). Working memory and the control of action: Evidence from task switching.Journal of Experimental Psychology: General,130, 641–657. doi:10.1037/0096-3445.130.4.641CrossRefGoogle Scholar
  7. Baddeley, A. [D.], Gathercole, S. [E.], &Papagno, C. (1998). The phonological loop as a language learning device.Psychological Review,105, 158–173.CrossRefPubMedGoogle Scholar
  8. Baddeley, A. D., &Hitch, G. J. (1974). Working memory. In G. H. Bower (Ed.),The psychology of learning and motivation: Advances in research and theory (Vol. 8, pp. 47–89). New York: Academic Press.Google Scholar
  9. Baddeley, A. [D.], &Larsen, J. D. (2003). The disruption of STM: A response to our commentators.Quarterly Journal of Experimental Psychology,56A, 1301–1306.Google Scholar
  10. Baddeley, A. D., Lewis, V., &Vallar, G. (1984). Exploring the articulatory loop.Quarterly Journal of Experimental Psychology,36A, 233–252.Google Scholar
  11. Baddeley, A. [D.], Papagno, C., &Vallar, G. (1988). When longterm learning depends on short-term storage.Journal of Memory & Language,27, 586–595. doi:10.1016/0749-596X(88)90028-9CrossRefGoogle Scholar
  12. Berz, W. L. (1995). Working memory in music: A theoretical model.Music Perception,12, 353–364.Google Scholar
  13. Besson, M., Schön, D., Moreno, S., Santos, A., &Magne, C. (2007). Influence of musical expertise and musical training on pitch processing in music and language.Restorative Neurology & Neuroscience,25, 399–410.Google Scholar
  14. Brandler, S., &Rammsayer, T. H. (2003). Differences in mental abilities between musicians and non-musicians.Psychology of Music,31, 123–138. doi:10.1177/0305735603031002290CrossRefGoogle Scholar
  15. Brown, S., &Martinez, M. J. (2007). Activation of premotor vocal areas during musical discrimination.Brain & Cognition,63, 59–69. doi:10.1016/j.bandc.2006.08.006CrossRefGoogle Scholar
  16. Brown, S., Martinez, M. J., Hodges, D. A., Fox, P. T., &Parsons, L. M. (2004). The song system of the human brain.Cognitive Brain Research,20, 363–375. doi:10.1016/j.cogbrainres.2004.03.016CrossRefPubMedGoogle Scholar
  17. Brown, S., Martinez, M. J., &Parsons, L. M. (2006). Music and language side by side in the brain: A PET study of the generation of melodies and sentences.European Journal of Neuroscience,23, 2791–2803.CrossRefPubMedGoogle Scholar
  18. Callan, D. E., Tsytsarev, V., Hanakawa, T., Callan, A. M., Katsuhara, M., Fukuyama, H., &Turner, R. (2006). Song and speech: Brain regions involved with perception and covert production.NeuroImage,31, 1327–1342. doi:10.1016/j.neuroimage.2006.01.036CrossRefPubMedGoogle Scholar
  19. Chan, A. S., Ho, Y.-C., &Cheung, M.-C. (1998). Music training improves verbal memory.Nature,396, 128.CrossRefPubMedGoogle Scholar
  20. Chase, W. G., &Ericsson, K. A. (1981). Skilled memory. In J. R. Anderson (Ed.),Cognitive skills and their acquisition (pp. 141–189). Hillsdale, NJ: Erlbaum.Google Scholar
  21. Clark, H. H. (1973). The language-as-fixed-effect fallacy: A critique of language statistics in psychological research.Journal of Verbal Learning & Verbal Behavior,12, 335–359.CrossRefGoogle Scholar
  22. Clarke, E. F. (1988). Generative principles in music performance. In J. A. Sloboda (Ed.),Generative processes in music: The psychology of performance, improvisation, and composition (pp. 1–26). Oxford: Oxford University Press, Clarendon Press.Google Scholar
  23. Colle, H. A., &Welsh, A. (1976). Acoustic making in primary memory.Journal of Verbal Learning & Verbal Behavior,15, 17–31. doi:10.1016/S0022-5371(76)90003-7CrossRefGoogle Scholar
  24. Conrad, R. (1964). Acoustic confusions in immediate memory.British Journal of Psychology,55, 75–84.Google Scholar
  25. Conrad, R., &Hull, A. J. (1964). Information, acoustic confusion and memory span.British Journal of Psychology,55, 429–432.PubMedGoogle Scholar
  26. Croonen, W. L. M. (1994). Effects of length, tonal structure, and contour in the recognition of tone series.Perception & Psychophysics,55, 623–632.CrossRefGoogle Scholar
  27. Darwin, C. (1871).The descent of man and selection in relation to sex. New York: Appleton.Google Scholar
  28. Deutsch, D. (1970). Tones and numbers: Specificity of interference in immediate memory.Science,168, 1604–1605.CrossRefPubMedGoogle Scholar
  29. Dowling, W. J. (1991). Tonal strength and melody recognition after long and short delays.Perception & Psychophysics,50, 305–313.CrossRefGoogle Scholar
  30. Dowling, W. J. (1994). Melodic contour in hearing and remembering melodies. In R. Aiello & J. A. Sloboda (Eds.),Musical perceptions (pp. 173–190). New York: Oxford University Press.Google Scholar
  31. Ericsson, K. A., &Kintsch, W. (1995). Long-term working memory.Psychological Review,102, 211–245.CrossRefPubMedGoogle Scholar
  32. Franklin, M. S., Moore, K. S., Yip, C.-Y., Jonides, J., Rattray, K., &Moher, J. (2008). The effects of musical training on verbal memory.Psychology of Music,36, 353–365. doi:10.1177/0305735607086044CrossRefGoogle Scholar
  33. Gaab, N., &Schlaug, G. (2003). The effect of musicianship on pitch memory in performance matched groups.NeuroReport,14, 2291–2295.CrossRefPubMedGoogle Scholar
  34. Gaab, N., Tallal, P., Kim, H., Lakshminarayanan, K., Archie, J. J., Glover, G. H., &Gabrieli, J. D. E. (2005). Neural correlates of rapid spectrotemporal processing in musicians and nonmusicians. In G. Avanzini, L. Lopez, & S. Koelsch (Eds.),The neurosciences and music II: From perception to performance (Annals of the New York Academy of Sciences, Vol. 1060, pp. 82–88). New York: New York Academy of Sciences.Google Scholar
  35. Gathercole, S. E., &Baddeley, A. D. (1990). Phonological memory deficits in language disordered children: Is there a causal connection?Journal of Memory & Language,29, 336–360. doi:10.1016/0749-596X(90)90004-JCrossRefGoogle Scholar
  36. Greene, R. L., &Samuel, A. G. (1986). Recency and suffix effects in serial recall of musical stimuli.Journal of Experimental Psychology: Learning, Memory, & Cognition,12, 517–524.CrossRefGoogle Scholar
  37. Hadlington, L. [J.], Bridges, A. M., &Darby, R. J. (2004). Auditory location in the irrelevant sound effect: The effects of presenting auditory stimuli to either the left ear, right ear or both ears.Brain & Cognition,55, 545–557. doi:10.1016/j.bandc.2004.04.001CrossRefGoogle Scholar
  38. Halpern, A. R., Kwak, S., Bartlett, J. C., &Dowling, W. J. (1996). Effects of aging and musical experience on the representation of tonal hierarchies. {Psychology & Aging}11, 235–246.CrossRefGoogle Scholar
  39. Hanley, J. R., &Bakopoulou, E. (2003). Irrelevant speech, articulatory suppression, and phonological similarity: A test of the phonological loop model and the feature model.Psychonomic Bulletin & Review,10, 435–444.CrossRefGoogle Scholar
  40. Henson, R., Hartley, T., Burgess, N., Hitch, G., &Flude, B. (2003). Selective interference with verbal short-term memory for serial order information: A new paradigm and tests of a timing-signal hypothesis.Quarterly Journal of Experimental Psychology,56A, 1307–1334. doi:10.1080/02724980244000747Google Scholar
  41. Hickok, G., Buchsbaum, B., Humphries, C., &Muftuler, T. (2003). Auditory-motor interaction revealed by fMRI: Speech, music, and working memory in Area Spt.Journal of Cognitive Neuroscience,15, 673–682. doi:10.1162/jocn.2003.15.5.673PubMedGoogle Scholar
  42. Ho, Y.-C., Cheung, M.-C., &Chan, A. S. (2003). Music training improves verbal but not visual memory: Cross-sectional and longitudinal explorations in children.Neuropsychology,17, 439–450.CrossRefPubMedGoogle Scholar
  43. Jakobson, L. S., Lewycky, S. T., Kilgour, A. R., &Stoesz, B. M. (2008). Memory for verbal and visual material in highly trained musicians.Music Perception,26, 41–55. doi:10.1525/mp.2008.26.1.41CrossRefGoogle Scholar
  44. Jones, D. [M.] (1993). Objects, streams, and threads of auditory attention. In A. [D.] Baddeley & L. Weiskrantz (Eds.),Attention: Selection, awareness, and control: A tribute to Donald Broadbent (pp. 87–104). Oxford: Oxford University Press.Google Scholar
  45. Jones, D. M., &Macken, W. J. (1993). Irrelevant tones produce an irrelevant speech effect: Implications for phonological coding in working memory.Journal of Experimental Psychology: Learning, Memory, & Cognition,19, 369–381.CrossRefGoogle Scholar
  46. Jones, D. M., Macken, W. J., &Harries, C. (1997). Disruption of short-term recognition memory for tones: Streaming or interference?Quarterly Journal of Experimental Psychology,50A, 337–357.CrossRefGoogle Scholar
  47. Jones, D. M., Macken, W. J., &Murray, A. C. (1993). Disruption of visual short-term memory by changing-state auditory stimuli: The role of segmentation.Memory & Cognition,21, 318–328.CrossRefGoogle Scholar
  48. Jones, J. L., Lucker, J., Zalewski, C., Brewer, C., &Drayna, D. (2009). Phonological processing in adults with deficits in musical pitch recognition.Journal of Communication Disorders,42, 226–234. doi:10.1016/j.jcomdis.2009.01.001CrossRefPubMedGoogle Scholar
  49. Keller, T. A., Cowan, N., &Saults, J. S. (1995). Can auditory memory for tone pitch be rehearsed?Journal of Experimental Psychology: Learning, Memory, & Cognition,21, 635–645.CrossRefGoogle Scholar
  50. Kishon-Rabin, L., Amir, O., Vexler, Y., &Zaltz, Y. (2001). Pitch discrimination: Are professional musicians better than non-musicians?Journal of Basic & Clinical Physiology & Pharmacology,12, 125–143.Google Scholar
  51. Koelsch, S., Schulze, K., Sammler, D., Fritz, T., Müller, K., &Gruber, O. (2009). Functional architecture of verbal and tonal working memory: An fMRI study.Human Brain Mapping,30, 859–873. doi:10.1002/hbm.20550CrossRefPubMedGoogle Scholar
  52. Kraus, N., &Banai, K. (2007). Auditory-processing malleability: Focus on language and music.Current Directions in Psychological Science,16, 105–110. doi:10.1111/j.1467-8721.2007.00485.xCrossRefGoogle Scholar
  53. Krumhansl, C. L. (1990).Cognitive foundations of musical pitch. New York: Oxford University Press.Google Scholar
  54. Levitin, D. J. (2006).This is your brain on music: The science of a human obsession. New York: Dutton.Google Scholar
  55. Liefooghe, B., Barouillet, P., Vandierendonck, A., &Camos, V. (2008). Working memory costs of task switching.Journal of Experimental Psychology: Learning, Memory, & Cognition,34, 478–494. doi:10.1037/0278-7393.34.3.478CrossRefGoogle Scholar
  56. Luria, A. R., Tsvetkova, L. S., &Futer, D. S. (1965). Aphasia in a composer.Journal of the Neurological Sciences,2, 288–292.CrossRefPubMedGoogle Scholar
  57. Macken, W. J., Tremblay, S., Houghton, R. J.,Nicholls, A. P., &Jones, D. M. (2003). Does auditory streaming require attention? Evidence from attentional selectivity in short-term memory.Journal of Experimental Psychology: Human Perception & Performance,29, 43–51.CrossRefGoogle Scholar
  58. Macmillan, N. A., &Creelman, C. D. (2005).Detection theory: A user's guide (2nd ed.). Mahwah, NJ: Erlbaum.Google Scholar
  59. Mandell, J., Schulze, K., &Schlaug, G. (2007). Congenital amusia: An auditory-motor feedback disorder?Restorative Neurology & Neuroscience,25, 323–334.Google Scholar
  60. Marcus, G. F., Vouloumanos, A., &Sag, I. A. (2003). Does Broca's play by the rules?Nature Neuroscience,6, 651–652.CrossRefPubMedGoogle Scholar
  61. Marin, O. S. M., &Perry, D. W. (1999). Neurological aspects of music perception and performance. In D. Deutsch (Ed.),The psychology of music (2nd ed.), (pp. 653–724). San Diego: Academic Press.CrossRefGoogle Scholar
  62. Micheyl, C., Delhommeau, K., Perrot, X., &Oxenham, A. J. (2006). Influence of musical and psychoacoustical training on pitch discrimination.Hearing Research,219, 36–47. doi:10.1016/ j.heares.2006.05.004CrossRefPubMedGoogle Scholar
  63. Miyake, A., Friedman, N. P., Emerson, M. J., Witzki, A. H., Howerter, A., &Wager, T. D. (2000). The unity and diversity of executive functions and their contributions to complex “frontal lobe” tasks: A latent variable analysis.Cognitive Psychology,41, 49–100. doi:10.1006/cogp.1999.0734CrossRefPubMedGoogle Scholar
  64. Moore, B. C. J. (2003).An introduction to the psychology of hearing (5th ed.). San Diego: Academic Press.Google Scholar
  65. Nairne, J. S. (1990). A feature model of immediate memory.Memory & Cognition,18, 251–269.Google Scholar
  66. Neath, I. (2000). Modeling the effects of irrelevant speech on memory.Psychonomic Bulletin & Review,7, 403–423.Google Scholar
  67. Neath, I., &Brown, G. D. A. (2006). SIMPLE: Further applications of a local distinctiveness model of memory. In B. H. Ross (Ed.),The psychology of learning and motivation. (Vol. 46, pp. 201–243). San Diego: Academic Press.Google Scholar
  68. Nimmo, L. M., &Roodenrys, S. (2005). The phonological similarity effect in serial recognition.Memory,13, 773–784. doi:10.1080/ 09658210444000386CrossRefPubMedGoogle Scholar
  69. Overy, K. (2003). Dyslexia and music: From timing deficits to musical intervention. In G. Avanzini, C. Faienza, L. Lopez, M. Majno, & D. Minciacchi (Eds.),The neurosciences and music III: Disorders and plasticity (Annals of the New York Academy of Sciences, Vol. 999, pp. 497–505). New York: New York Academy of Sciences. doi:10.1196/annals.1284.060Google Scholar
  70. Patel, A. D. (2003). Language, music, syntax, and the brain.Nature Neuroscience,6, 674–681. doi:10.1038/nn1082CrossRefPubMedGoogle Scholar
  71. Patel, A. D. (2008).Music, language, and the brain. New York: Oxford University Press.Google Scholar
  72. Patel, A. D. (2009). Language, music, and the brain: A resource- sharing framework. In P. Rebuschat, M. Rohrmeier, J. Hawkins, & I. Cross (Eds.),Language and music as cognitive systems. Oxford: Oxford University Press.Google Scholar
  73. Patel, A. D., Peretz, I., Tramo, M., &Labreque, R. (1998). Processing prosodic and musical patterns: A neuropsychological investigation.Brain & Language,61, 123–144. doi:10.1006/brln.1997.1862CrossRefGoogle Scholar
  74. Pechmann, T., &Mohr, G. (1992). Interference in memory for tonal pitch: Implications for a working-memory model.Memory & Cognition,20, 314–320.CrossRefGoogle Scholar
  75. Peretz, I., &Zatorre, R. J. (2005). Brain organization for music processing.Annual Review of Psychology,56, 89–114. doi:10.1146/ annurev.psych.56.091103.070225CrossRefPubMedGoogle Scholar
  76. Roberts, L. A. (1986). Modality and suffix effects in memory for melodic and harmonic musical materials.Cognitive Psychology,18, 123–157.CrossRefPubMedGoogle Scholar
  77. Rudner, M., Fransson, P., Ingvar, M., Nyberg, L., &Rönnberg, J. (2007). Neural representation of binding lexical signs and words in the episodic buffer of working memory.Neuropsychologia,45, 2258–2276. doi:10.1016/j.neuropsychologia.2007.02.017CrossRefPubMedGoogle Scholar
  78. Salamé, P., &Baddeley, A. [D.] (1986). Phonological factors in STM: Similarity and the unattended speech effect.Bulletin of the Psychonomic Society,24, 263–265.Google Scholar
  79. Salamé, P., &Baddeley, A. D. (1989). Effects of background music on phonological short-term memory.Quarterly Journal of Experimental Psychology,41A, 107–122.Google Scholar
  80. Schendel, Z. A., &Palmer, C. (2007). Suppression effects on musical and verbal memory.Memory & Cognition,35, 640–650.CrossRefGoogle Scholar
  81. Schlittmeier, S. J., Hellbrück, J., &Klatte, M. (2008). Does irrelevant music cause an irrelevant sound effect for auditory items?European Journal of Cognitive Psychology,20, 252–271.CrossRefGoogle Scholar
  82. Semal, C., &Demany, L. (1991). Dissociation of pitch from timbre in auditory short-term memory.Journal of the Acoustical Society of America,89, 2404–2410. doi:10.1121/1.400928CrossRefPubMedGoogle Scholar
  83. Semal, C., &Demany, L. (1993). Further evidence for an autonomous processing of pitch in auditory short-term memory.Journal of the Acoustical Society of America,94, 1315–1322. doi:10.1121/1.408159CrossRefPubMedGoogle Scholar
  84. Semal, C., Demany, L., Ueda, K., &Hallé, P.-A. (1996). Speech ver sus nonspeech in pitch memory.Journal of the Acoustical Society of America,100, 1132–1140. doi:10.1121/1.416298CrossRefPubMedGoogle Scholar
  85. Sloboda, J. A., &Parker, D. H. H. (1985). Immediate recall of melodies. In P. Howell, I. Cross & R. West (Eds.),Musical structure and cognition (pp. 143–168). London: Academic Press.Google Scholar
  86. Stewart, L., von Kriegstein, K., Warren, J. D., &Griffiths, T. D. (2006). Music and the brain: Disorders of musical listening.Brain,129, 2533–2553. doi:10.1093/brain/awl171CrossRefPubMedGoogle Scholar
  87. Surprenant, A. M., Neath, I., &LeCompte, D. C. (1999). Irrelevant speech, phonological similarity, and presentation modality.Memory,7, 405–420.CrossRefGoogle Scholar
  88. Surprenant, A. M., Pitt, M. A., &Crowder, R. G. (1993). Auditory recency in immediate memory.Quarterly Journal of Experimental Psychology,46A, 193–223.Google Scholar
  89. Williamon, A., &Egner, T. (2004). Memory structures for encoding and retrieving a piece of music: An ERP investigation.Cognitive Brain Research,22, 36–44. doi:10.1016/j.cogbrainres.2004.05.012CrossRefPubMedGoogle Scholar
  90. Williamon, A., &Valentine, E. (2002). The role of retrieval structures in memorizing music.Cognitive Psychology,44, 1–32. doi:10.1006/ cogp.2001.0759CrossRefPubMedGoogle Scholar
  91. Williamson, V. J. (2008).Comparing short-term memory for sequences of verbal and tonal materials. Unpublished PhD thesis, University of York.Google Scholar
  92. Wong, P. C. M., Skoe, E., Russo, N. M., Dees, T., &Kraus, N. (2007). Musical experience shapes human brainstem encoding of linguistic pitch patterns.Nature Neuroscience,10, 420–422. doi:10.1038/nn1872PubMedGoogle Scholar

Copyright information

© Psychonomic Society, Inc. 2010

Authors and Affiliations

  • Victoria J. Williamson
    • 2
  • Alan D. Baddeley
    • 1
  • Gramham J. Hitch
    • 1
  1. 1.University of YorkYorkEngland
  2. 2.Psychology Department, GoldsmithsUniversity of LondonLondonEngland

Personalised recommendations