Memory & Cognition

, Volume 37, Issue 3, pp 277–291 | Cite as

See what I mean? An ERP study of the effect of background knowledge on novel object processing

  • Caterina Gratton
  • Karen M. Evans
  • Kara D. FedermeierEmail author


Two event-related potential (ERP) experiments were used to examine the representation of object feature information and background knowledge in semantic memory. Participants were trained on novel object categories with three features and were tested with new exemplars that were complete or were missing one to two features that were essential or nonessential to object function. In both a category membership judgment task (Experiment 1) and a parts detection task (Experiment 2), the N400, a functionally specific measure of semantic access, was graded with feature number but was insensitive to knowledge-based feature importance. A separable ERP effect related to knowledge was seen in Experiment 1 as an enhanced frontocentral negativity (beginning ∼300 msec) to exemplars missing a nonessential versus an essential feature, but this effect did not manifest when background knowledge was less task relevant (Experiment 2). Thus, similarity- and knowledge-based effects are separable, and the locus of knowledge effects varies with task demands but does not seem to arise from facilitated semantic access.


Background Knowledge Semantic Memory Electrode Site Category Member N400 Effect 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Azizian, A., Freitas, A. L., Parvaz, M. A., & Squires, N. K. (2006). Beware misleading cues: Perceptual similarity modulates the N2/P3 complex. Psychophysiology, 43, 253–260.CrossRefPubMedGoogle Scholar
  2. Daffner, K. R., Mesulam, M. M., Scinto, L. F., Calvo, V., Faust, R., & Holcomb, P. J. (2000). An electrophysiological index of stimulus unfamiliarity. Psychophysiology, 37, 737–747.CrossRefPubMedGoogle Scholar
  3. Dale, A. M. (1994). Source localization and spatial discriminate analysis of event-related potentials: Linear approaches. University of California, San Diego, Department of Cognitive Science.Google Scholar
  4. Folstein, J. R., & Van Petten, C. (2004). Multidimensional rule, unidimensional rule, and similarity strategies in categorization: Eventrelated potential correlates. Journal of Experimental Psychology: Learning, Memory, & Cognition, 30, 1026–1044.CrossRefGoogle Scholar
  5. Folstein, J. R., & Van Petten, C. (2008). Influence of cognitive control and mismatch on the N2 component of the ERP: A review. Psychophysiology, 45, 152–170.CrossRefPubMedGoogle Scholar
  6. Folstein, J. R., Van Petten, C., & Rose, S. A. (2008). Novelty and conflict in the categorization of complex stimuli. Psychophysiology, 45, 467–479.CrossRefPubMedGoogle Scholar
  7. Ganis, G., & Kutas, M. (2003). An electrophysiological study of scene effects on object identification. Cognitive Brain Research, 16, 123–144.CrossRefPubMedGoogle Scholar
  8. Ganis, G., Kutas, M., & Sereno, M. I. (1996). The search for “common sense: An electrophysiological study of the comprehension of words and pictures in reading. Journal of Cognitive Neuroscience, 8, 89–106.CrossRefGoogle Scholar
  9. Goldstone, R. L. (1994). Influences of categorization on perceptual discrimination. Journal of Experimental Psychology: General, 123, 178–200.CrossRefGoogle Scholar
  10. Goldstone, R. L., Lippa, Y., & Shiffrin, R. M. (2001). Altering object representations through category learning. Cognition, 78, 27–43.CrossRefPubMedGoogle Scholar
  11. Heinze, H.-J., Münte, T.-F., & Kutas, M. (1998). Context effects in a category verification task as assessed by event-related brain potential (ERP) measures. Biological Psychology, 47, 121–135.CrossRefPubMedGoogle Scholar
  12. Johnson, K. E., & Mervis, C. B. (1997). Effects of varying levels of expertise on the basic level of categorization. Journal of Experimental Psychology: General, 126, 248–277.CrossRefGoogle Scholar
  13. Kutas, M., & Federmeier, K. D. (2000). Electrophysiology reveals semantic memory use in language comprehension. Trends in Cognitive Sciences, 4, 463–470.CrossRefPubMedGoogle Scholar
  14. Kutas, M., Federmeier, K. D., Staab, J., & Kluender, R. (2007). Language. In J. T. Cacioppo, L. Tassinary, & G. Berntson (Eds.), Handbook of psychophysiology (3rd ed., pp. 555–580). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  15. Kutas, M., & Hillyard, S. A. (1980a). Event-related brain potentials to semantically inappropriate and surprisingly large words. Biological Psychology, 11, 99–116.CrossRefPubMedGoogle Scholar
  16. Kutas, M., & Hillyard, S. A. (1980b). Reading senseless sentences: Brain potentials reflect semantic incongruity. Science, 207, 203–205.CrossRefPubMedGoogle Scholar
  17. Kutas, M., & Hillyard, S. A. (1983). Event-related brain potentials to grammatical errors and semantic anomalies. Memory & Cognition, 11, 539–550.CrossRefGoogle Scholar
  18. Lin, E. L., & Murphy, G. L. (1997). Effects of background knowledge on object categorization and part detection. Journal of Experimental Psychology: Human Perception & Performance, 23, 1153–1169.CrossRefGoogle Scholar
  19. Luck, S. J., & Hillyard, S. A. (1994). Electrophysiological correlates of feature analysis during visual search. Psychophysiology, 31, 291–308.CrossRefPubMedGoogle Scholar
  20. Luhmann, C. C., Ahn, W.-K., & Palmeri, T. J. (2006). Theory-based categorization under speeded conditions. Memory & Cognition, 34, 1102–1111.CrossRefGoogle Scholar
  21. McLaughlin, J., Osterhout, L., & Kim, A. (2004). Neural correlates of second-language word learning: Minimal instruction produces rapid change. Nature Neuroscience, 7, 703–704.CrossRefPubMedGoogle Scholar
  22. Medin, D. L. (1989). Concepts and conceptual structure. American Psychologist, 44, 1469–1481.CrossRefPubMedGoogle Scholar
  23. Murphy, G. L. (2002). The big book of concepts. Cambridge, MA: MIT Press.Google Scholar
  24. Murphy, G. L., & Medin, D. L. (1985). The roles of theories in conceptual coherence. Psychological Review, 92, 289–316.CrossRefPubMedGoogle Scholar
  25. Nieuwenhuis, S., Yeung, N., van den Wildenberg, W., & Ridderinkhof, K. R. (2003). Electrophysiological correlates of anterior cingulate function in a go/no-go task: Effects of response conflict and trial type frequency. Cognitive, Affective, & Behavioral Neuroscience, 3, 17–26.CrossRefGoogle Scholar
  26. Nobre, A. C., & McCarthy, G. (1995). Language-related field potentials in the anterior medial temporal lobe: Modulation by word-type and semantic priming. Journal of Neuroscience, 15, 1090–1098.PubMedGoogle Scholar
  27. Nosofsky, R. M. (1986). Attention, similarity, and the identification-categorization relationship. Journal of Experimental Psychology: General, 115, 39–61.CrossRefGoogle Scholar
  28. Olichney, J. M., Van Petten, C., Paller, K. A., Salmon, D. P., Iragui, V. J., & Kutas, M. (2000). Word repetition in amnesia: Electrophysiological measures of impaired and spared memory. Brain, 123, 1948–1963.CrossRefPubMedGoogle Scholar
  29. Palmeri, T. J., & Blalock, C. (2000). The role of background knowledge in speeded perceptual categorization. Cognition, 77, B45-B57.CrossRefPubMedGoogle Scholar
  30. Pfefferbaum, A., Ford, J. M., Weller, B. J., & Kopell, B. S. (1985). ERPs to response production and inhibition. Electroencephalography & Clinical Neurophysiology, 60, 423–434.CrossRefGoogle Scholar
  31. Rosch, E., & Mervis, C. B. (1975). Family resemblances: Studies in the internal structure of categories. Cognitive Psychology, 7, 573–605.CrossRefGoogle Scholar
  32. Schendan, H. E., & Kutas, M. (2002). Neurophysiological evidence for two processing times for visual object identification. Neuropsychologia, 40, 931–945.CrossRefPubMedGoogle Scholar
  33. Schendan, H. E., & Kutas, M. (2003). Time course of processes and representations supporting visual object identification and memory. Journal of Cognitive Neuroscience, 15, 111–135.CrossRefPubMedGoogle Scholar
  34. Schendan, H. E., & Kutas, M. (2007). Neuropsychological evidence for the time course of activation of global shape, part, and local contour representations during visual object categorization and memory. Journal of Cognitive Neuroscience, 19, 734–749.CrossRefPubMedGoogle Scholar
  35. Sitnikova, T., Kuperberg, G., & Holcomb, P. J. (2003). Semantic integration of videos in real-world events: An electrophysiological investigation. Psychophysiology, 40, 160–164.CrossRefPubMedGoogle Scholar
  36. Swaab, T. Y., Brown, C., & Hagoort, P. (1998). Understanding ambiguous words in sentence contexts: Electrophysiological evidence for delayed contextual selection in Broca’s aphasia. Neuropsychologia, 36, 737–761.CrossRefPubMedGoogle Scholar
  37. Tanaka, J. W., & Curran, T. (2001). A neural basis for expert object recognition. Psychological Science, 12, 43–47.CrossRefPubMedGoogle Scholar
  38. Tse, C. Y., Lee, C. L., Sullivan, J., Garnsey, S. M., Dell, G. S., Fabiani, M., & Gratton, G. (2007). Imaging cortical dynamics of language processing with the event-related optical signal. Proceedings of the National Academy of Sciences, 104, 17157–17162.CrossRefGoogle Scholar
  39. West, W. C., & Holcomb, P. J. (2002). Event-related potentials during discourse-level semantic integration of complex pictures. Cognitive Brain Research, 13, 363–375.CrossRefPubMedGoogle Scholar
  40. Wisniewski, E. J. (1995). Prior knowledge and functionally relevant features in concept learning. Journal of Experimental Psychology: Learning, Memory, & Cognition, 21, 449–468.CrossRefGoogle Scholar

Copyright information

© Psychonomic Society, Inc. 2009

Authors and Affiliations

  • Caterina Gratton
    • 1
  • Karen M. Evans
    • 1
  • Kara D. Federmeier
    • 1
    Email author
  1. 1.Department of PsychologyUniversity of IllinoisChampaign

Personalised recommendations