Memory & Cognition

, Volume 36, Issue 6, pp 1132–1143 | Cite as

Indirect assessment of visual working memory for simple and complex objects

  • Tal Makovski
  • Yuhong V. Jiang


Previous research has shown that visual search performance is modulated by the current contents in visual working memory (VWM), even when the contents of VWM are irrelevant to the search task. For example, visual search is faster when the target—rather than a distractor—is surrounded by a shape currently held in VWM. This study uses the modulation of visual search by VWM to investigate properties of VWM. Participants were asked to remember the color or the shape of novel polygons whose “goodness” of figure varied according to Garner’s (1962) rotation and reflection transformation principle. During the memory retention interval, participants searched for a tilted line among vertical lines embedded inside colored polygons. Search was faster when the target—rather than a distractor—was enclosed by the remembered polygons. The congruity effect diminished with increasing memory load and decreasing figure goodness. We conclude that congruity effects in visual search can indirectly assess VWM representation strength.


Visual Search Congruity Effect Memory Load Gruity Effect Ruent Trial 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Alvarez, G. A., & Cavanagh, P. (2004). The capacity of visual shortterm memory is set both by visual information load and by number of objects. Psychological Science, 15, 106–111.CrossRefPubMedGoogle Scholar
  2. Attneave, F. (1957). Physical determinants of the judged complexity of shapes. Journal of Experimental Psychology, 53, 221–227.CrossRefPubMedGoogle Scholar
  3. Awh, E., Barton, B., & Vogel, E. K. (2007). Visual working memory represents a fixed number of items regardless of complexity. Psychological Science, 18, 622–628.CrossRefPubMedGoogle Scholar
  4. Ballard, D. H., Hayhoe, M. M., & Pelz, J. B. (1995). Memory representations in natural tasks. Journal of Cognitive Neuroscience, 7, 66–80.CrossRefGoogle Scholar
  5. Brainard, D. H. (1997). The Psychophysics Toolbox. Spatial Vision, 10, 433–436.CrossRefPubMedGoogle Scholar
  6. Cowan, N. (2001). The magical number 4 in short-term memory: A reconsideration of mental storage capacity. Behavioral & Brain Sciences, 24, 87–185.CrossRefGoogle Scholar
  7. Downing, P. E. (2000). Interactions between visual working memory and selective attention. Psychological Science, 11, 467–473.CrossRefPubMedGoogle Scholar
  8. Downing, P. E., & Dodds, C. M. (2004). Competition in visual working memory for control of search. Visual Cognition, 11, 689–703.CrossRefGoogle Scholar
  9. Droll, J. A., Hayhoe, M. M., Triesch, J., & Sullivan, B. T. (2005). Task demands control acquisition and storage of visual information. Journal of Experimental Psychology: Human Perception & Performance, 31, 1416–1438.CrossRefGoogle Scholar
  10. Duncan, J., & Humphreys, G. W. (1989). Visual-search and stimulus similarity. Psychological Review, 96, 433–458.CrossRefPubMedGoogle Scholar
  11. Eng, H. Y., Chen, D., & Jiang, Y. (2005). Visual working memory for simple and complex visual stimuli. Psychonomic Bulletin & Review, 12, 1127–1133.CrossRefGoogle Scholar
  12. Garner, W. R. (1962). Uncertainty and structure as psychological concepts. New York: Wiley.Google Scholar
  13. Garner, W. R., & Sutliff, D. (1974). The effect of goodness on encoding time in visual pattern discrimination. Perception & Psychophysics, 16, 426–430.CrossRefGoogle Scholar
  14. Hayhoe, M., & Ballard, D. (2005). Eye movements in natural behavior. Trends in Cognitive Sciences, 9, 188–194.CrossRefPubMedGoogle Scholar
  15. Hochberg, J., & McAlister, E. (1953). A quantitative approach to figure “goodness.” Journal of Experimental Psychology, 46, 361–364.CrossRefPubMedGoogle Scholar
  16. Hollingworth, A. (2003). Failures of retrieval and comparison constrain change detection in natural scenes. Journal of Experimental Psychology: Human Perception & Performance, 29, 388–403.CrossRefGoogle Scholar
  17. Huang, L., & Pashler, H. (2007). Working memory and the guidance of visual attention: Consonance-driven orienting. Psychonomic Bulletin & Review, 14, 148–153.CrossRefGoogle Scholar
  18. Jiang, Y. V., Olson, I. R., & Chun, M. M. (2000). Organization of visual short-term memory. Journal of Experimental Psychology: Learning, Memory, & Cognition, 26, 683–702.CrossRefGoogle Scholar
  19. Jiang, Y. V., Shim, W. M., & Makovski, T. (in press). Visual working memory for line orientations and face identities. Perception & Psychophysics.Google Scholar
  20. Keren, G., O’Hara, W. P., & Skelton, J. M. (1977). Levels of noise processing and attentional control. Journal of Experimental Psychology: Human Perception & Performance, 3, 653–664.CrossRefGoogle Scholar
  21. Landman, R., Spekreijse, H., & Lamme, V. A. F. (2003). Large capacity storage of integrated objects before change blindness. Vision Research, 43, 149–164.CrossRefPubMedGoogle Scholar
  22. Luck, S. J., & Vogel, E. K. (1997). The capacity of visual working memory for features and conjunctions. Nature, 390, 279–281.CrossRefPubMedGoogle Scholar
  23. Makovski, T., Shim, W. M., & Jiang, Y. V. (2006). Interference from filled delays on visual change detection. Journal of Vision, 6, 1459–1470.CrossRefPubMedGoogle Scholar
  24. Makovski, T., Sussman, R. S., & Jiang, Y. V. (2008). Orienting attention in visual working memory reduces interference from memory probes. Journal of Experimental Psychology: Learning, Memory, & Cognition, 34, 369–380.CrossRefGoogle Scholar
  25. Olivers, C. N. L., Meijer, F., & Theeuwes, J. (2006). Feature-based memory-driven attentional capture: Visual working memory content affects visual attention. Journal of Experimental Psychology: Human Perception & Performance, 32, 1243–1265.CrossRefGoogle Scholar
  26. Olsson, H., & Poom, L. (2005). Visual memory needs categories. Proceedings of the National Academy of Sciences, 102, 8776–8780.CrossRefGoogle Scholar
  27. Pashler, H. (1988). Familiarity and visual change detection. Perception & Psychophysics, 44, 369–378.CrossRefGoogle Scholar
  28. Pelli, D. G. (1997). The VideoToolbox software for visual psychophysics: Transforming numbers into movies. Spatial Vision, 10, 437–442.CrossRefPubMedGoogle Scholar
  29. Phillips, W. A. (1974). On the distinction between sensory storage and short-term visual memory. Perception & Psychophysics, 16, 283–290.CrossRefGoogle Scholar
  30. Rauschenberger, R., & Yantis, S. (2006). Perceptual encoding efficiency in visual search. Journal of Experimental Psychology: General, 135, 116–131.CrossRefGoogle Scholar
  31. Rensink, R. A. (2002). Change detection. Annual Review of Psychology, 53, 245–277.CrossRefPubMedGoogle Scholar
  32. Song, J. H., & Jiang, Y. V. (2006). Visual working memory for simple and complex features: An fMRI study. NeuroImage, 30, 963–972.CrossRefPubMedGoogle Scholar
  33. Soto, D., Heinke, D., Humphreys, G. W., & Blanco, M. J. (2005). Early, involuntary top-down guidance of attention from working memory. Journal of Experimental Psychology: Human Perception & Performance, 31, 248–261.CrossRefGoogle Scholar
  34. Soto, D., & Humphreys, G. W. (2007). Automatic guidance of visual attention from verbal working memory. Journal of Experimental Psychology: Human Perception & Performance, 33, 730–737.CrossRefGoogle Scholar
  35. Soto, D., Humphreys, G. W., & Heinke, D. (2006). Working memory can guide pop-out search. Vision Research, 46, 1010–1018.CrossRefPubMedGoogle Scholar
  36. Vickery, T. J., King, L. W., & Jiang, Y. V. (2005). Setting up the target template in visual search. Journal of Vision, 5, 81–92.CrossRefPubMedGoogle Scholar
  37. Vogel, E. K., Woodman, G. F., & Luck, S. J. (2006). The time course of consolidation in visual working memory. Journal of Experimental Psychology: Human Perception & Performance, 32, 1436–1451.CrossRefGoogle Scholar
  38. Wilken, P., & Ma, W. J. (2004). A detection theory account of change detection. Journal of Vision, 4, 1120–1135.CrossRefPubMedGoogle Scholar
  39. Wolfe, J. M., Butcher, S. J., Lee, C., & Hyle, M. (2003). Changing your mind: On the contributions of top-down and bottom-up guidance in visual search for feature singletons. Journal of Experimental Psychology: Human Perception & Performance, 29, 483–502.CrossRefGoogle Scholar
  40. Woodman, G. F., & Luck, S. J. (2004). Visual search is slowed when visuospatial working memory is occupied. Psychonomic Bulletin & Review, 11, 269–274.CrossRefGoogle Scholar
  41. Woodman, G. F., & Luck, S. J. (2007). Do the contents of visual working memory automatically influence attentional selection during visual search? Journal of Experimental Psychology: Human Perception & Performance, 33, 363–377.CrossRefGoogle Scholar
  42. Woodman, G. F., Vogel, E. K., & Luck, S. J. (2001). Visual search remains efficient when visual working memory is full. Psychological Science, 12, 219–224.CrossRefPubMedGoogle Scholar

Copyright information

© Psychonomic Society, Inc. 2008

Authors and Affiliations

  1. 1.Harvard UniversityCambridge
  2. 2.Department of PsychologyUniversity of MinnesotaMinneapolis

Personalised recommendations