Learning & Behavior

, Volume 38, Issue 3, pp 329–336 | Cite as

Conserving and managing animals that learn socially and share cultures



Socially learned behavior can be a crucial factor in how animals interact with their environment and, thus, in conservation and management. For species in which social learning and culture are important determinants of behavior, several factors complicate conservation and management. These include the rapid spread of novel behavior through social learning, the inhibition of adaptive behavior because of cultural conformism, the evolution of maladaptive behavior, and the development of culturally isolated but sometimes sympatric groups. These factors can affect habitat suitability, movements, how animals react to anthropogenic effects, and genetic structures. Social learning and culture may be important factors in translocation success, and should sometimes be considered when delineating population units for conservation and management. We should aim to protect cultural as well as genetic diversity. Unfortunately, clear data on social learning and culture in the wild are scarce. Hence, the ideas and methods outlined in this special issue have great potential.


  1. Barrett-Lennard, L. G., Deecke, V. B., Yurk, H., & Ford, J. K. B. (2001). A sound approach to the study of culture. Behavioral & Brain Sciences, 24, 325–326.CrossRefGoogle Scholar
  2. Boyd, R., & Richerson, P. J. (1985). Culture and the evolutionary process. Chicago: Chicago University Press.Google Scholar
  3. Brown, C., & Laland, K. N. (2001). Social learning and life skills training for hatchery reared fish. Journal of Fish Biology, 59, 471–493.CrossRefGoogle Scholar
  4. Cavalli-Sforza, L. L., Feldman, M. W., Chen, K. H., & Dornbusch, S. M. (1982). Theory and observation in cultural transmission. Science, 218, 19–27.PubMedCrossRefGoogle Scholar
  5. Chilvers, B. L., & Corkeron, P. J. (2001). Trawling and bottlenose dolphins’ social structure. Proceedings of the Royal Society B, 268, 1901–1905.PubMedCrossRefGoogle Scholar
  6. Custance, D. M., Whiten, A., & Fredman, T. (2002). Social learning and primate reintroduction. International Journal of Primatology, 23, 479–499.CrossRefGoogle Scholar
  7. de Guia, A. P. O., & Saitoh, T. (2007). The gap between the concept and definitions in the evolutionarily significant unit: The need to integrate neutral genetic variation and adaptive variation. Ecological Research, 22, 604–612.CrossRefGoogle Scholar
  8. Diamond, J. M. (1978). The Tasmanians: The longest isolation, the simplest technology. Nature, 273, 185–186.CrossRefGoogle Scholar
  9. Festa-Bianchet, M., & Apollonio, M. (2004). General introduction. In M. Festa-Bianchet & M. Apollonio (Eds.), Animal behavior and wildlife conservation (pp. 3–11). Washington, DC: Island Press.Google Scholar
  10. Ford, J. K. B., & Ellis, G. M. (2006). Selective foraging by fish-eating killer whales Orcinus orca in British Columbia. Marine Ecology Progress Series, 316, 185–199.CrossRefGoogle Scholar
  11. Ford, J. K. B., Ellis, G. M., & Balcomb, K. C., III (2000). Killer whales: The natural history and genealogy of Orcinus orca in British Columbia and Washington State (2nd ed.). Vancouver: UBC Press.Google Scholar
  12. Fox, M. A. (2001). Cetacean culture: Philosophical implications. Behavioral & Brain Sciences, 24, 333–334.CrossRefGoogle Scholar
  13. Fraser, D. J., & Bernatchez, L. (2001). Adaptive evolutionary conservation: Towards a unified concept for defining conservation units. Molecular Ecology, 10, 2741–2752.PubMedGoogle Scholar
  14. Gosling, L. M. (2004). Adaptive behavior and population viability. In M. Festa-Bianchet & M. Apollonio (Eds.), Animal behavior and wildlife conservation (pp. 13–30). Washington, DC: Island Press.Google Scholar
  15. Griffin, A. S. (2004). Social learning about predators: A review and prospectus. Learning & Behavior, 32, 131–140.CrossRefGoogle Scholar
  16. Griffin, A. S., Blumstein, D. T., & Evans, C. S. (2000). Training captive-bred or translocated animals to avoid predators. Conservation Biology, 14, 1317–1326.CrossRefGoogle Scholar
  17. Guttridge, T. L., Myrberg, A. A., Porcher, I. F., Sims, D. W., & Krause, J. (2009). The role of learning in shark behaviour. Fish & Fisheries, 10, 450–469.CrossRefGoogle Scholar
  18. Henrich, J., & Boyd, R. (1998). The evolution of conformist transmission and the emergence of between-group differences. Evolution & Human Behavior, 19, 215–241.CrossRefGoogle Scholar
  19. Hlista, B. L., Sosik, H. M., Traykovski, L. V. M., Kenney, R. D., & Moore, M. J. (2009). Seasonal and interannual correlations between right-whale distribution and calving success and chlorophyll concentrations in the Gulf of Maine, USA. Marine Ecology Progress Series, 394, 289–302.CrossRefGoogle Scholar
  20. Kitchener, A. C. (1999). Watch with mother: A review of social learning in the Felidae. In H. O. Box & K. R. Gibson (Eds.), Mammalian social learning: Comparative and ecological perspectives (pp. 236–258). Cambridge: Cambridge University Press.Google Scholar
  21. Kitowski, I. (2009). Social learning of hunting skills in juvenile marsh harriers Circus aeruginosus. Journal of Ethology, 27, 327–332.CrossRefGoogle Scholar
  22. Kleiman, D. G. (1989). Reintroduction of captive mammals for conservation. Bioscience, 39, 152–163.CrossRefGoogle Scholar
  23. Laiolo, P. (2008). Characterizing the spatial structure of songbird cultures. Ecological Applications, 18, 1774–1780.PubMedCrossRefGoogle Scholar
  24. Laiolo, P., & Jovani, R. (2007). The emergence of animal culture conservation. Trends in Ecology Evolution, 22, 5.PubMedCrossRefGoogle Scholar
  25. Laland, K. N., & Galef, B. G., Jr. (Eds.) (2009). The question of animal culture. Cambridge, MA: Harvard University Press.Google Scholar
  26. Laland, K. N., & Brown, G. R. (2006). Niche construction, human behavior, and the adaptive-lag hypothesis. Evolutionary Anthropology, 15, 95–104.CrossRefGoogle Scholar
  27. Laland, K. N., & Janik, V. M. (2006). The animal cultures debate. Trends in Ecology & Evolution, 21, 542–547.CrossRefGoogle Scholar
  28. Laland, K. N., Kendal, J. R., & Kendal, R. L. (2009). Animal culture: Problems and solutions. In K. N. Laland & B. G. Galef, Jr. (Eds.), The question of animal culture (pp. 174–197). Cambridge, MA: Harvard University Press.Google Scholar
  29. Laland, K. N., Odling-Smee, J., & Feldman, M. W. (2000). Niche construction, biological evolution and cultural change. Behavioral & Brain Sciences, 23, 131–146.CrossRefGoogle Scholar
  30. Laland, K. N., & Williams, K. (1998). Social transmission of maladaptive information in the guppy. Behavioral Ecology, 9, 493–499.CrossRefGoogle Scholar
  31. Logan, C. J., & Pepper, J. W. (2007). Social learning is central to innovation, in primates and beyond. Behavioral & Brain Sciences, 30, 416–417.CrossRefGoogle Scholar
  32. Luck, G. W., Daily, G. C., & Ehrlich, P. R. (2003). Population diversity and ecosystem services. Trends in Ecology & Evolution, 18, 331–336.CrossRefGoogle Scholar
  33. MacCall, A. D. (1990). Dynamic geography of marine fish populations. Seattle: Washington Sea Grant/University of Washington Press.Google Scholar
  34. Marcoux, M., Rendell, L., & Whitehead, H. (2007). Indications of fitness differences among vocal clans of sperm whales. Behavioural Ecology & Sociobiology, 61, 1093–1098.CrossRefGoogle Scholar
  35. Mascia, M., Brosius, J. P., Dobson, T. A., Forbes, B. C., Horowitz, L., McKean, M. A., & Turner, N. J. (2003). Conservation and the social sciences. Conservation Biology, 17, 649–650.CrossRefGoogle Scholar
  36. Mazur, R., & Seher, V. (2008). Socially learned foraging behaviour in wild black bears, Ursus americanus. Animal Behaviour, 75, 1503–1508.CrossRefGoogle Scholar
  37. McComb, K., Moss, C., Durant, S. M., Baker, L., & Sayialel, S. (2001). Matriarchs as repositories of social knowledge in African elephants. Science, 292, 491–494.PubMedCrossRefGoogle Scholar
  38. McDougall, P. T., Réale, D., Sol, D., & Reader, S. M. (2006). Wildlife conservation and animal temperament: Causes and consequences of evolutionary change for captive, reintroduced, and wild populations. Animal Conservation, 9, 39–48.CrossRefGoogle Scholar
  39. McGrew, W. C. (1987). Tools to get food: The subsistants of Tasmanian aborigines and Tanzanian chimpanzees compared. Journal of Anthropological Research, 43, 247–258.Google Scholar
  40. McGrew, W. C. (2003). Ten dispatches from the chimpanzee culture wars. In F. B. M. de Waal & P. L. Tyack (Eds.), Animal social complextive ity: Intelligence, culture, and individualized societies (pp. 419–439). Cambridge, MA: Harvard University Press.Google Scholar
  41. McGrew, W. C. (2004). The cultured chimpanzee: Reflections on cultural primatology. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  42. Møller, A. P. (2000). Sexual selection and conservation. In L. M. Gosling & W. J. Sutherland (Eds.), Behavior and conservation (pp. 161–171). Cambridge: Cambridge University Press.Google Scholar
  43. Morrell, L., Croft, D. P., Dyer, J., Chapman, B., Kelley, J., Laland, K. N., & Krause, J. (2008). Association patterns and foraging behaviour in natural and artificial guppy shoals. Animal Behaviour, 76, 855–864.CrossRefGoogle Scholar
  44. Osborn, F. V. (2002). Capsicum oleoresin as an elephant repellent: Field trials in the communal lands of Zimbabwe. Journal of Wildlife Management, 66, 674–677.CrossRefGoogle Scholar
  45. Osborne, R. W. (1999). A historical ecology of Salish Sea “resident” killer whales (Orcinus orca): With implications for management. Unpublished doctoral dissertation, University of Victoria, Victoria, British Columbia.Google Scholar
  46. Owen-Smith, N. (2003). Foraging behavior, habitat suitability, and translocation success, with special reference to large mammalian herbivores. In M. Festa-Bianchet & M. Apollonio (Eds.), Animal behavior and wildlife conservation (pp. 93–109). Washington, DC: Island Press.Google Scholar
  47. Perry, S. (2009). Are non-human primates likely to exhibit cultural capacities like those of humans? In K. N. Laland & B. G. Galef, Jr. (Eds.), The question of animal culture (pp. 247–268). Cambridge, MA: Harvard University Press.Google Scholar
  48. Ramsey, G., Bastian, M. L., & van Schaik, C. (2007). Animal innovation defined and operationalized. Behavioral & Brain Sciences, 30, 393–407.Google Scholar
  49. Rendell, L. E., & Whitehead, H. (2001). Culture in whales and dolphins. Behavioral & Brain Sciences, 24, 309–324.Google Scholar
  50. Rendell, L. E., & Whitehead, H. (2003). Vocal clans in sperm whales (Physeter macrocephalus). Proceedings of the Royal Society B, 270, 225–231.PubMedCrossRefGoogle Scholar
  51. Richerson, P. J., & Boyd, R. (2005). Not by genes alone: How culture transformed human evolution. Chicago: Chicago University Press.Google Scholar
  52. Ryan, S. J. (2006). The role of culture in conservation planning for small or endangered populations. Conservation Biology, 20, 1321–1324. doi:10.1111/j.1523-1739.2006.00347.xPubMedCrossRefGoogle Scholar
  53. Slabbekoorn, H., & Smith, T. B. (2002). Bird song, ecology and speciation. Philosophical Transactions of the Royal Society B, 357, 493–503.CrossRefGoogle Scholar
  54. Smith, T. D., Reeves, R. R., Josephson, E. A., Lund, J. N., & Whitehead, H. (2008). Sperm whale catches and encounter rates during the 19th and 20th centuries: An apparent paradox. In D. J. Starkey & M. Barnard (Eds.), Oceans past: Management insights from the history of marine animal populations (pp. 149–173). London: Earthscan/ James & James.Google Scholar
  55. Stevick, P. T., McConnell, B. J., & Hammond, P. S. (2002). Patterns of movement. In A. R. Hoelzel (Ed.), Marine mammal biology: An evolutionary approach (pp. 185–216). Oxford: Blackwell.Google Scholar
  56. Sutherland, W. J. (1998). The importance of behavioural studies in conservation biology. Animal Behaviour, 56, 801–809.PubMedCrossRefGoogle Scholar
  57. Sutherland, W. J., Adams, W. M., Aronson, R. B., Aveling, R., Blackburn, T. M., Broad, S., et al. (2009). One hundred questions of importance to the conservation of global biological diversity. Conservation Biology, 23, 557–567.CrossRefGoogle Scholar
  58. Teaney, D. O. (2004). The insignificant killer whale: A case study of inherent flaws in the wildlife services’ distinct population segment policy and a proposed solution. Environmental Law, 34, 647–702.Google Scholar
  59. Tear, T. H., Mosley, J. C., & Ables, E. D. (1997). Landscape-scale foraging decisions by reintroduced Arabian oryx. Journal of Wildlife Management, 61, 1142–1154.CrossRefGoogle Scholar
  60. Tuljapurkar, S., & Caswell, H. (1997). Structured-population models in marine, terrestrial, and freshwater systems. New York: Chapman & Hall.Google Scholar
  61. van de Waal, E., Renevey, N., Favre, C. M., & Bshary, R. (in press). Selective attention to philopatric models causes directed social learning in wild vervet monkeys. Proceedings of the Royal Society B. doi:10.1098/rspb.2009.2260Google Scholar
  62. Vilhunen, S., Hirvonen, H., & Laakkonen, M. V. M. (2004). Less is more: Social learning of predator recognition requires a low demonstrator to observer ratio in Arctic charr (Salvelinus alpinus). Behavioral Ecology & Sociobiology, 57, 275–282.CrossRefGoogle Scholar
  63. Weilgart, L. S. (2007). The impacts of anthropogenic noise on cetaceans and implications for management. Canadian Journal of Zoology, 85, 1091–1116.CrossRefGoogle Scholar
  64. Whitehead, H. (2003). Sperm whales: Social evolution in the ocean. Chicago: Chicago University Press.Google Scholar
  65. Whitehead, H. (2007). Learning, climate and the evolution of cultural capacity. Journal of Theoretical Biology, 245, 341–350.PubMedCrossRefGoogle Scholar
  66. Whitehead, H., & Rendell, L. (2004). Movements, habitat use and feeding success of cultural clans of South Pacific sperm whales. Journal of Animal Ecology, 73, 190–196.CrossRefGoogle Scholar
  67. Whitehead, H., Rendell, L., Osborne, R. W., & Würsig, B. (2004). Culture and conservation of non-humans with reference to whales and dolphins: Review and new directions. Biological Conservation, 120, 427–437.CrossRefGoogle Scholar
  68. Whitehead, H., & Richerson, P. J. (2009). The evolution of conformist social learning can cause population collapse in realistically variable environments. Evolution & Human Behavior, 30, 261–273.CrossRefGoogle Scholar

Copyright information

© Psychonomic Society, Inc. 2010

Authors and Affiliations

  1. 1.Department of BiologyDalhousie UniversityHalifaxCanada

Personalised recommendations