Cognitive, Affective, & Behavioral Neuroscience

, Volume 8, Issue 4, pp 418–428 | Cite as

Conceptual representations in goal-directed decision making

  • Nicholas SheaEmail author
  • Kristine Krug
  • Philippe N. Tobler
Intersections among Philosophy, Psychology, and Neuroscience


Emerging evidence suggests that the long-established distinction between habit-based and goal-directed decision-making mechanisms can also be sustained in humans. Although the habit-based system has been extensively studied in humans, the goal-directed system is less well characterized. This review brings to that task the distinction between conceptual and nonconceptual representational mechanisms. Conceptual representations are structured out of semantic constituents (concepts)—the use of which requires an ability to perform some language-like syntactic processing. Decision making—as investigated by neuroscience and psychology—is normally studied in isolation from questions about concepts as studied in philosophy and cognitive psychology. We ask what role concepts play in the “goal-directed” decision-making system. We argue that one fruitful way of studying this system in humans is to investigate the extent to which it deploys conceptual representations.


Prefrontal Cortex Orbitofrontal Cortex Conceptual Representation Constituent Structure Retrospective Revaluation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Adams, C. D., & Dickinson A. (1981). Actions and habits: Variations in associative representations during instrumental learning. In N. E. Spear & R. R. Miller (Eds.), Information processing in animals: Memory mechanisms (pp. 143–166). Hillsdale, NJ: Erlbaum.Google Scholar
  2. Allen, C., & Hauser, M. (1996). Concept attribution in nonhuman animals: Theoretical and methodological problems in ascribing complex mental processes. In M. Bekoff & D. Jamieson (Eds.), Readings in animal cognition (pp. 47–62). Cambridge, MA: MIT Press.Google Scholar
  3. Balleine, B. W., & Dickinson, A. (1998a). Goal-directed instrumental action: Contingency and incentive learning and their cortical substrates. Neuropharmacology, 37, 407–419.PubMedCrossRefGoogle Scholar
  4. Balleine, B. W., & Dickinson, A. (1998b). The role of incentive learning in instrumental outcome revaluation by sensory-specific satiety. Animal Learning & Behavior, 26, 46–59.Google Scholar
  5. Balleine, B. W., Espinet, A., & Gonzalez, F. (2005). Perceptual learning enhances retrospective revaluation of conditioned flavor preferences in rats. Journal of Experimental Psychology: Animal Behavior Processes, 31, 341–350.PubMedCrossRefGoogle Scholar
  6. Baxter, M. G., Parker, A., Lindner, C. C., Izquierdo, A. D., & Murray, E. A. (2000). Control of response selection by reinforcer value requires interaction of amygdala and orbital prefrontal cortex. Journal of Neuroscience, 20, 4311–4319.PubMedGoogle Scholar
  7. Behrens, T. E., Woolrich, M. W., Walton, M. E., & Rushworth, M. F. S. (2007). Learning the value of information in an uncertain world. Nature Neuroscience, 10, 1214–1221.PubMedCrossRefGoogle Scholar
  8. Bermúdez, J. (2003). Thinking without words. Cambridge, MA: MIT Press.Google Scholar
  9. Bermúdez, J. (2006). Animal reasoning and proto-logic. In S. Hurley & M. Nudds (Eds.), Rational animals? (pp. 127–138). Oxford: Oxford University Press.Google Scholar
  10. Berridge, K. C. (2001). Reward learning: Reinforcement, incentives and expectations. In D. L. Medin (Ed.), The psychology of learning and motivation (Vol. 41, pp. 223–278). San Diego: Academic Press.Google Scholar
  11. Birrell, J. M., & Brown, V. J. (2000). Medial frontal cortex mediates perceptual attentional set shifting in the rat. Journal of Neuroscience, 20, 4320–4324.PubMedGoogle Scholar
  12. Blodgett, H. C. (1929). The effect of the introduction of reward upon the maze performance of rats. University of California Publications in Psychology, 4, 113–134.Google Scholar
  13. Cantalupo, C., & Hopkins, W. D. (2001). Asymmetric Broca’s area in great apes. Nature, 414, 505.PubMedCrossRefGoogle Scholar
  14. Chater, N., & Heyes, C. (1994). Animal concepts: Content and discontent. Mind & Language, 9, 209–246.CrossRefGoogle Scholar
  15. Clayton, N. S., & Dickinson, A. (1998). Episodic-like memory during cache recovery by scrub jays. Nature, 395, 272–274.PubMedCrossRefGoogle Scholar
  16. Coutureau, E., & Killcross, S. (2003). Inactivation of the infralimbic prefrontal cortex reinstates goal-directed responding in overtrained rats. Behavioral & Brain Research, 146, 167–174.CrossRefGoogle Scholar
  17. Critchley, H. D., & Rolls, E. T. (1996). Hunger and satiety modify the responses of olfactory and visual neurons in the primate orbitofrontal cortex. Journal of Neurophysiology, 75, 1673–1686.PubMedGoogle Scholar
  18. Daw, N. D., Niv, Y., & Dayan, P. (2005). Uncertainty-based competition between prefrontal and dorsolateral striatal systems for behavioral control. Nature Neuroscience, 8, 1704–1711.PubMedCrossRefGoogle Scholar
  19. Devlin, J. T., Matthews, P. M., & Rushworth, M. F. (2003). Semantic processing in the left inferior prefrontal cortex: A combined functional magnetic resonance imaging and transcranial magnetic stimulation study. Journal of Cognitive Neuroscience, 15, 71–84.PubMedCrossRefGoogle Scholar
  20. Devlin, J. T., Raley, J., Tunbridge, E., Lanary, K., Floyer-Lea, A., Narain, C., et al. (2003). Functional asymmetry for auditory processing in human primary auditory cortex. Journal of Neuroscience, 23, 11516–11522.PubMedGoogle Scholar
  21. Devlin, J. T., Sillery, E. L., Hall, D. A., Hobden, P., Behrens, T. E., & Nunes, R. G. (2006). Reliable identification of the auditory thalamus using multi-modal structural analyses. NeuroImage, 30, 1112–1120.PubMedCrossRefGoogle Scholar
  22. Dickinson, A. (1980). Contemporary animal learning theories. Cambridge: Cambridge University Press.Google Scholar
  23. Dickinson, A., & Balleine, B. (1994). Motivational control of goaldirected action. Animal Learning & Behavior, 22, 1–18.Google Scholar
  24. Dickinson, A., & Balleine, B. (2002). The role of learning in motivation. In C. R. Gallistel (Ed.), Learning, motivation, and emotion (pp. 497–533). New York: Wiley.Google Scholar
  25. Dickinson, A., Balleine, B., Watt, A., Gonzalez, F., & Boakes, R. A. (1995). Motivational control after extended instrumental training. Animal Learning & Behavior, 23, 197–206.Google Scholar
  26. Emery, N. J., & Clayton, N. S. (2001). Effects of experience and social context on prospective caching strategies by scrub jays. Nature, 414, 443–446.PubMedCrossRefGoogle Scholar
  27. Evans, G. (1982). The varieties of reference. Oxford: Oxford University Press.Google Scholar
  28. Freedman, D. J., & Assad, J. A. (2006). Experience-dependent representation of visual categories in parietal cortex. Nature, 443, 85–88.PubMedCrossRefGoogle Scholar
  29. Freedman, D. J., Riesenhuber, M., Poggio, T., & Miller, E. K. (2001). Categorical representation of visual stimuli in the primate prefrontal cortex. Science, 291, 260–263.CrossRefGoogle Scholar
  30. Fuster, J. M. (2000). Executive frontal functions. Experimental Brain Research, 133, 66–70.CrossRefGoogle Scholar
  31. Gentner, T. Q., Fenn, K. M., Margoliash, D., & Nusbaum, H. C. (2006). Recursive syntactic pattern learning by songbirds. Nature, 440, 1204–1207.PubMedCrossRefGoogle Scholar
  32. Gottfried, J. A., O’Doherty, J., & Dolan, R. J. (2003). Encoding predictive reward value in human amygdala and orbitofrontal cortex. Science, 301, 1104–1107.PubMedCrossRefGoogle Scholar
  33. Hare, B., Call, J., Agnetta, B., & Tomasello, M. (2000). Chimpan zees know what conspecifics do and do not see. Animal Behavior, 59, 771–785.CrossRefGoogle Scholar
  34. Hare, B., Call, J., & Tomasello, M. (2001). Do chimpanzees know what conspecifics know? Animal Behavior, 61, 139–151.CrossRefGoogle Scholar
  35. Holland, P. C., & Gallagher, M. (2004). Amygdala-frontal interactions and reward expectancy. Current Opinion in Neurobiology, 14, 148–155.PubMedCrossRefGoogle Scholar
  36. Houk, J. C., Adams, J. L., & Barto, A. G. (1995). A model of how the basal ganglia generate and use neural signals that predict reinforcement. In J. C. Houk, J. L. Davis, & D. G. Beiser (Eds.), Models of information processing in the basal ganglia (pp. 249–270). Boston: MIT Press.Google Scholar
  37. Hurley, S., & Nudds, M. (Eds.). (2006). Rational animals? Oxford: Oxford University Press.Google Scholar
  38. Jog, M. S., Kubota, Y., Connolly, C. I., Hillegaart, V., & Graybiel, A. M. (1999). Building neural representations of habits. Science, 286, 1745–1749.PubMedCrossRefGoogle Scholar
  39. Johnson, A., & Redish, A. D. (2007). Neural ensembles in CA3 transiently encode paths forward of the animal at a decision point. Journal of Neuroscience, 27, 12176–12189.PubMedCrossRefGoogle Scholar
  40. Kennerley, S. W., Walton, M. E., Behrens, T. E. J., Buckley, M. J., & Rushworth, M. F. S. (2006). Optimal decision making and the anterior cingulate cortex. Nature Neurosicence, 9, 940–947.CrossRefGoogle Scholar
  41. Kenward, B., Weir, A. A., Rutz, C., & Kacelnik, A. (2005). Behavioural ecology: Tool manufacture by naive juvenile crows. Nature, 433, 121.PubMedCrossRefGoogle Scholar
  42. Killcross, S., & Coutureau, E. (2003). Coordination of actions and habits in the medial prefrontal cortex of rats. Cerebral Cortex, 13, 400–408.PubMedCrossRefGoogle Scholar
  43. Koechlin, E., & Jubault, T. (2006). Broca’s area and the hierarchical organization of human behavior. Neuron, 50, 963–974.PubMedCrossRefGoogle Scholar
  44. Koechlin, E., Ody, C., & Kounelher, F. (2003). The architecture of cognitive control in the human prefrontal cortex. Science, 302, 1181–1185.PubMedCrossRefGoogle Scholar
  45. Lau, B., & Glimcher, P. W. (2007). Action and outcome encoding in the primate caudate nucleus. Journal of Neuroscience, 27, 14502–14514.PubMedCrossRefGoogle Scholar
  46. McClure, S. M., Laibson, D. I., Loewenstein, G., & Cohen, J. D. (2004). Separate neural systems value immediate and delayed monetary rewards. Science, 306, 502–507.CrossRefGoogle Scholar
  47. McGaughy J., Ross, R. S., & Eichenbaum, H. (2008). Noradrenergic, but not cholinergic, deafferentation of prefrontal cortex impairs attentional set-shifting. Neuroscience, 153, 63–71.PubMedCrossRefGoogle Scholar
  48. McLaren, I. P. L., & Mackintosh, N. J. (2002). Associative learning and elemental representation: II. Generalization and discrimination. Animal Learning & Behavior, 30, 177–200.Google Scholar
  49. Millikan, R. G. (2000). On clear and confused ideas. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  50. Montague, P. R., Dayan, P., & Sejnowski, T. J. (1996). A framework for mesencephalic dopamine systems based on predictive Hebbian learning. Journal of Neuroscience, 16, 1936–1947.PubMedGoogle Scholar
  51. Murphy, G. L. (2004). The big book of concepts. Cambridge, MA: MIT Press.Google Scholar
  52. Newsome, W. T., Britten, K. H., & Movshon, J. A. (1989). Neuronal correlates of a perceptual decision. Nature, 341, 52–54.PubMedCrossRefGoogle Scholar
  53. O’Doherty, J., Dayan, P., Friston, K. J., Critchley, H., & Dolan, R. J. (2003). Temporal difference models and reward-related learning in the human brain. Neuron, 38, 150–152.CrossRefGoogle Scholar
  54. O’Doherty, J., Dayan, P., Schultz, J., Deichmann, R., Friston, K., & Dolan, R. (2004). Dissociable roles of ventral and dorsal striatum in instrumental conditioning. Science, 304, 452–454.PubMedCrossRefGoogle Scholar
  55. Ottoni, E. B., de Resende, B. D., & Izar, P. (2005). Watching the best nutcrackers: What capuchin monkeys (Cebus apella) know about others’ tool-using skills. Animal Cognition, 8, 215–219.PubMedCrossRefGoogle Scholar
  56. Packard, M. G., & Knowlton, B. J. (2002). Learning and memory functions of the basal ganglia. Annual Review of Neuroscience, 25, 563–593.PubMedCrossRefGoogle Scholar
  57. Padoa-Schioppa, C., & Assad, J. A. (2008). The representation of economic value in the orbitofrontal cortex is invariant for changes of menu. Nature Neuroscience, 11, 95–102.PubMedCrossRefGoogle Scholar
  58. Pasupathy, A., & Miller, E. K. (2005). Different time courses of learning-related activity in the prefrontal cortex and striatum. Nature, 433, 873–876.PubMedCrossRefGoogle Scholar
  59. Peacocke, C. (1992). A study of concepts. Cambridge, MA: MIT Press.Google Scholar
  60. Preuss, T. M. (1995). Do rats have prefrontal cortex? The Rose-Woolsey-Akert program reconsidered. Journal of Cognitive Neuroscience, 7, 1–24.CrossRefGoogle Scholar
  61. Price, J. L. (2007). Definition of the orbital cortex in relation to specific connections with limbic and visceral structures and other cortical regions. In G. Schoenbaum, J. A. Gottfried, E. A. Murray, & S. J. Ramus (Eds.), Linking affect to action: Critical contributions of the orbitofrontal cortex (Annals of the New York Academy of Sciences, Vol. 1121, pp. 54–71). New York: New York Academy of Sciences.Google Scholar
  62. Ramirez, D. R., & Savage, L. M. (2007). Differential involvement of the basolateral amygdala, orbitofrontal cortex, and nucleus accumbens core in the acquisition and use of reward expectancies. Behavioral Neuroscience, 121, 896–906.PubMedCrossRefGoogle Scholar
  63. Rolls, E. T., Sienkiewicz, Z. J., & Yaxley, S. (1989). Hunger modulates the responses to gustatory stimuli of single neurons in the caudolateral orbitofrontal cortex of the macaque monkey. European Journal of Neuroscience, 1, 53–60.PubMedCrossRefGoogle Scholar
  64. Rushworth, M. F., Behrens, T. E., Rudebeck, P. H., & Walton, M. E. (2007). Contrasting roles for cingulate and orbitofrontal cortex in decisions and social behavior. Trends in Cognitive Sciences, 11, 168–176.PubMedCrossRefGoogle Scholar
  65. Rustichini, A. (2008). Dual or unitary system? Two alternative models of decision making. Cognitive, Affective, & Behavioral Neuroscience, 8, 355–362.CrossRefGoogle Scholar
  66. Saito, N., Mushiake, H., Sakamoto, K., Itoyama, Y., & Tanji, J. (2005). Representation of immediate and final behavioral goals in the monkey prefrontal cortex during an instructed delay period. Cereberal Cortex, 15, 1535–1546.CrossRefGoogle Scholar
  67. Schultz, W., Dayan, P., & Montague, P. R. (1997). A neural substrate of prediction and reward. Science, 275, 1593–1599.PubMedCrossRefGoogle Scholar
  68. Seymour, B., O’Doherty, J., Dayan, P., Koltzenburg, M., Jones, A. K., Dolan, R. J., et al. (2004). Temporal difference models describe higher-order learning in humans. Nature, 429, 664–667.PubMedCrossRefGoogle Scholar
  69. Shima, K., Isoda, M., Mushiake, H., & Tanji, J. (2007). Categorization of behavioral sequences in the prefrontal cortex. Nature, 445, 315–318.PubMedCrossRefGoogle Scholar
  70. Shipley, B. E., & Colwill, R. M. (1996). Direct effects on instrumental performance of outcome revaluation by drive shifts. Animal Learning & Behavior, 24, 57–67.Google Scholar
  71. Stich, S. P. (1978). Do animals have beliefs? Australasian Journal of Philosophy, 57, 15–28.CrossRefGoogle Scholar
  72. Sugrue, L. P., Corrado, G. S., & Newsome, W. T. (2004). Matching behavior and the representation of value in the parietal cortex. Science, 304, 1782–1787.PubMedCrossRefGoogle Scholar
  73. Sugrue, L. P., Corrado, G. S., & Newsome, W. T. (2005). Choosing the greater of two goods: Neural currencies for valuation and decision making. Nature Reviews Neuroscience, 6, 1–13.CrossRefGoogle Scholar
  74. Tanaka, S. C., Balleine, B. W., & O’Doherty, J. P. (2008). Calculating consequences: Brain systems that encode the causal effects of actions. Journal of Neuroscience, 28, 6750–6755.PubMedCrossRefGoogle Scholar
  75. Tanji, J., Shima, K., & Mushiake, H. (2007). Concept-based behavioral planning and the lateral preforontal cortex. Trends in Cognitive Sciences, 17, 528–534.CrossRefGoogle Scholar
  76. Tobler, P. N., O’Doherty, J. P., Dolan, R. J., & Schultz, W. (2007). Reward value coding distinct from risk attitude-related uncertainty coding in human reward systems. Journal of Neurophysiology, 97, 1621–1632.PubMedCrossRefGoogle Scholar
  77. Toro, J. M., Trobalon, J. B., & Sebastián-Gallés, N. (2005). Effects of backward speech and speaker variability in language discrimination by rats. Journal of Experimental Psychology: Animal Behavior Processes, 31, 95–100.PubMedCrossRefGoogle Scholar
  78. Tremblay, L., & Schultz, W. (1999). Relative reward preference in primate orbitofrontal cortex. Nature, 398, 704–708.PubMedCrossRefGoogle Scholar
  79. Valentin, V. V., Dickinson, A., & O’Doherty, J. P. (2007). Determining the neural substrates of goal-directed learning in the human brain. Journal of Neuroscience, 27, 4019–4026.PubMedCrossRefGoogle Scholar
  80. Walton, M., Rudebeck, P. H., Bannerman, D., & Rushworth, M. (2007). Calculating the cost of acting in prefrontal cortex. In B. W. Balleine, K. Doya, J. O’Doherty, & M. Sakagami (Eds.), Reward and decision making in corticobasal ganglia networks (Annals of the New York Academy of Sciences, Vol. 1104, pp. 340–356). New York: New York Academy of Sciences.Google Scholar
  81. Whiten A., Spiteri A., Horner V., Bonnie K. E., Lambeth, S. P., Schapiro, S. J., & de Waal, F. B. (2007). Transmission of multiple traditions within and between chimpanzee groups. Current Biology, 17, 1038–1043.PubMedCrossRefGoogle Scholar
  82. Wright, A. A., & Katz, J. S. (2007). Generalization hypothesis of abstract-concept learning: Learning strategies and related issues in Macaca mulatta, Cebus apella, and Columba livia. Journal of Comparative Psychology, 121, 387–397.PubMedCrossRefGoogle Scholar
  83. Yang, T., & Shadlen, M. N. (2007). Probabilistic reasoning by neurons. Nature, 447, 1075–1080.PubMedCrossRefGoogle Scholar
  84. Yin, H. H., Knowlton, B. J., & Balleine, B. W. (2004). Lesions of dorsolateral striatum preserve outcome expectancy but disrupt habit formation in instrumental learning. European Journal of Neuroscience, 19, 181–189.PubMedCrossRefGoogle Scholar
  85. Yin, H. H., Knowlton, B. J., & Balleine, B. W. (2005). Blockade of NMDA receptors in the dorsomedial striatum prevents action-outcome learning in instrumental conditioning. European Journal of Neuroscience, 22, 505–512.PubMedCrossRefGoogle Scholar

Copyright information

© Psychonomic Society, Inc. 2008

Authors and Affiliations

  • Nicholas Shea
    • 1
    Email author
  • Kristine Krug
    • 1
  • Philippe N. Tobler
    • 2
  1. 1.University of OxfordFaculty of PhilosophyOxfordEngland
  2. 2.University of CambridgeCambridgeEngland

Personalised recommendations