Cognitive, Affective, & Behavioral Neuroscience

, Volume 8, Issue 3, pp 318–328 | Cite as

Cortical regions activated by the subjective sense of perceptual coherence of environmental sounds: A proposal for a neuroscience of intuition

  • Kirsten G. Volz
  • Rudolf Rübsamen
  • D. Yves von Cramon
Article

Abstract

According to the Oxford English Dictionary, intuition is “the ability to understand or know something immediately, without conscious reasoning.” In other words, people continuously, without conscious attention, recognize patterns in the stream of sensations that impinge upon them. The result is a vague perception of coherence, which subsequently biases thought and behavior accordingly. Within the visual domain, research using paradigms with difficult recognition has suggested that the orbitofrontal cortex (OFC) serves as a fast detector and predictor of potential content that utilizes coarse facets of the input. To investigate whether the OFC is crucial in biasing task-specific processing, and hence subserves intuitive judgments in various modalities, we used a difficult-recognition paradigm in the auditory domain. Participants were presented with short sequences of distorted, nonverbal, environmental sounds and had to perform a sound categorization task. Imaging results revealed rostral medial OFC activation for such auditory intuitive coherence judgments. By means of a conjunction analysis between the present results and those from a previous study on visual intuitive coherence judgments, the rostral medial OFC was shown to be activated via both modalities. We conclude that rostral OFC activation during intuitive coherence judgments subserves the detection of potential content on the basis of only coarse facets of the input.

References

  1. Abdi, H. (2007). Signal detection theory (SDT). In N. J. Salkind (Ed.), Encyclopedia of measurement and statistics. Thousand Oaks, CA: Sage.Google Scholar
  2. Anderson, J. R. (1983). A spreading activation theory of memory. Journal of Verbal Learning & Verbal Behavior, 22, 261–295.CrossRefGoogle Scholar
  3. Arana, F. S., Parkinson, J. A., Hinton, E., Holland, A. J., Owen, A. M., & Roberts, A. C. (2003). Dissociable contributions of the human amygdala and orbitofrontal cortex to incentive motivation and goal selection. Journal of Neuroscience, 23, 9632–9638.PubMedGoogle Scholar
  4. Bar, M. (2007). The proactive brain: Using analogies and associations to generate predictions. Trends in Cognitive Sciences, 11, 280–289.PubMedCrossRefGoogle Scholar
  5. Bar, M., Kassam, K. S., Ghuman, A. S., Boshyan, J., Schmid, A. M., Dale, A. M., et al. (2006). Top-down facilitation of visual recognition. Proceedings of the National Academy of Sciences, 103, 449–454.CrossRefGoogle Scholar
  6. Barbas, H. (1992). Architecture and cortical connections of the prefrontal cortex in the rhesus monkey. Advances in Neurology, 57, 91–115.PubMedGoogle Scholar
  7. Barbas, H., Medalla, M., Alade, O., Suski, J., Zikopoulos, B., & Lera, P. (2005). Relationship of prefrontal connections to inhibitory systems in superior temporal areas in the rhesus monkey. Cerebral Cortex, 15, 1356–1370.PubMedCrossRefGoogle Scholar
  8. Bechara, A., Damasio, A. R., Damasio, H., & Anderson, S. W. (1994). Insensitivity to future consequences following damage to human prefrontal cortex. Cognition, 50, 7–15.PubMedCrossRefGoogle Scholar
  9. Bechara, A., Damasio, H., & Damasio, A. R. (2000). Emotion, decision making and the orbitofrontal cortex. Cerebral Cortex, 10, 295–307.PubMedCrossRefGoogle Scholar
  10. Bechara, A., Tranel, D., & Damasio, A. R. (2002). The somatic marker hypothesis and decision-making. In F. Boller & J. Grafman (Series Eds.), J. Grafman (Vol. Ed.), Handbook of neuropsychology (2nd ed.; Vol. 7, pp. 117–143). Amsterdam: Elsevier.Google Scholar
  11. Betsch, C. (2004). Präferenz für Intuition und Deliberation: Inventar zur Erfassung von affekt- und kognitionsbasiertem Entscheiden. Zeitschrift für Differentielle & Diagnostische Psychologie, 25, 179–197.CrossRefGoogle Scholar
  12. Birn, R. M., Cox, R. W., & Bandettini, P. A. (2002). Detection versus estimation in event-related fMRI: Choosing the optimal stimulus timing. NeuroImage, 15, 252–264.PubMedCrossRefGoogle Scholar
  13. Boulougouris, V., Dalley, J. W., & Robbins, T. W. (2007). Effects of orbitofrontal, infralimbic and prelimbic cortical lesions on serial spatial reversal learning in the rat. Behavioural Brain Research, 179, 219–228.PubMedCrossRefGoogle Scholar
  14. Bowers, K. S., Regehr, G., Balthazard, C., & Parker, K. (1990). Intuition in the context of discovery. Cognitive Psychology, 22, 72–110.CrossRefGoogle Scholar
  15. Crowe, E., & Higgins, E. T. (1997). Regulatory focus and strategic inclinations: Promotion and prevention in decision-making. Organizational Behavior & Human Decision Processes, 69, 117–132.CrossRefGoogle Scholar
  16. Damasio, A. R. (1994). Descartes’ error: Emotion, reason, and the human brain. New York: Putnam.Google Scholar
  17. Epstein, S. (1973). The self-concept revisited, or a theory of a theory. American Psychologist, 28, 404–416.PubMedCrossRefGoogle Scholar
  18. Friston, K. J. (1994). Functional and effective connectivity in neuroimaging: A synthesis. Human Brain Mapping, 2, 56–78.CrossRefGoogle Scholar
  19. Friston, K. J., Fletcher, P., Josephs, O., Holmes, A., Rugg, M. D., & Turner, R. (1998). Event-related fMRI: Characterizing differential responses. NeuroImage, 7, 30–40.PubMedCrossRefGoogle Scholar
  20. Friston, K. J., Frith, C. D., Turner, R., & Frackowiak, R. S. (1995). Characterizing evoked hemodynamics with fMRI. NeuroImage, 2, 157–165.PubMedCrossRefGoogle Scholar
  21. Gilovich, T., Griffin, D., & Kahneman, D. (Eds.) (2002). Heuristics and biases: The psychology of intuitive judgement. Cambridge: Cambridge University Press.Google Scholar
  22. Gottfried, J. A., O’Doherty, J., & Dolan, R. J. (2003). Encoding predictive reward value in human amygdala and orbitofrontal cortex. Science, 301, 1104–1107.PubMedCrossRefGoogle Scholar
  23. Hammond, K. R. (2007). Beyond rationality: The search for wisdom in a troubled time. Oxford: Oxford University Press.Google Scholar
  24. Hammond, K. R., Hamm, R. M., Grassia, J., & Pearson, T. (1987). Direct comparison of the efficacy of intuitive and analytical cognition in expert judgment. IEEE Transactions on Systems, Man, & Cybernetics, 17, 753–770.Google Scholar
  25. Hogarth, R. M. (2001). Educating intuition. Chicago: University of Chicago Press.Google Scholar
  26. Ilg, R., Vogeley, K., Goschke, T., Bolte, A., Shah, J. N., Pöppel, E., & Fink, G. R. (2007). Neural processes underlying intuitive coherence judgments as revealed by fMRI on a semantic judgment task. NeuroImage, 38, 228–238.PubMedCrossRefGoogle Scholar
  27. Jezzard, P., & Balaban, R. S. (1995). Correction for geometric distortion in echo planar images from B0 field variations. Magnetic Resonance in Medicine, 34, 65–73.PubMedCrossRefGoogle Scholar
  28. Kaas, J. H., & Hackett, T. A. (2000). Subdivisions of auditory cortex and processing streams in primates. Proceedings of the National Academy of Sciences, 97, 11793–11799.CrossRefGoogle Scholar
  29. Kahneman, D., & Frederick, S. (2002). Representativeness revisited: Attribute substitution in intuitive judgment. In T. Gilovich, D. Griffin, & D. Kahneman (Eds.), Heuristics and biases: The psychology of intuitive judgement (pp. 49–81). Cambridge: Cambridge University Press.Google Scholar
  30. Kahneman, D., Slovic, P., & Tversky, A. (Eds.) (1982). Judgment under uncertainty: Heuristics and biases. Cambridge: Cambridge University Press.Google Scholar
  31. Koelsch, S., Gunter, T. C., von Cramon, D. Y., Zysset, S., Lohmann, G., & Friederici, A. D. (2002). Bach speaks: A cortical “language-network” serves the processing of music. NeuroImage, 17, 956–966.PubMedCrossRefGoogle Scholar
  32. Kringelbach, M. L. (2005). The human orbitofrontal cortex: Linking reward to hedonic experience. Nature Reviews Neuroscience, 6, 691–702.PubMedCrossRefGoogle Scholar
  33. Kringelbach, M. L., & Rolls, E. T. (2004). The functional neuroanatomy of the human orbitofrontal cortex: Evidence from neuroimaging and neuropsychology. Progress in Neurobiology, 72, 341–372.PubMedCrossRefGoogle Scholar
  34. Lewis, J. W., Brefczynski, J. A., Phinney, R. E., Janik, J. J., & DeYoe, E. A. (2005). Distinct cortical pathways for processing tool versus animal sounds. Journal of Neuroscience, 25, 5148–5158.PubMedCrossRefGoogle Scholar
  35. Lewis, J. W., Wightman, F. L., Brefczynski, J. A., Phinney, R. E., Binder, J. R., & DeYoe, E. A. (2004). Human brain regions involved in recognizing environmental sounds. Cerebral Cortex, 14, 1008–1021.PubMedCrossRefGoogle Scholar
  36. Lohmann, G., Müller, K., Bosch, V., Mentzel, H., Hessler, S., Chen, L., et al. (2001). LIPSIA—A new software system for the evaluation of functional magnetic resonance images of the human brain. Computerized Medical Imaging & Graphics, 25, 449–457.CrossRefGoogle Scholar
  37. Maess, B., Koelsch, S., Gunter, T. C., & Friederici, A. D. (2001). Musical syntax is processed in Broca’s area: An MEG study. Nature Neuroscience, 4, 540–545.PubMedGoogle Scholar
  38. Medin, D. L., & Coley, J. D. (1998). Concepts and categorization. In J. Hochberg (Ed.), Perception and cognition at century’s end: History, philosophy, theory (Handbook of Perception and Cognition, 2nd ed., pp. 403–440). San Diego: Academic Press.CrossRefGoogle Scholar
  39. Miezin, F. M., Maccotta, L., Ollinger, J. M., Petersen, S. E., & Buckner, R. L. (2000). Characterizing the hemodynamic response: Effects of presentation rate, sampling procedure, and the possibility of ordering brain activity based on relative timing. NeuroImage, 11, 735–759.PubMedCrossRefGoogle Scholar
  40. Neumann, J., & Lohmann, G. (2003). Bayesian second-level analysis of functional magnetic resonance images. NeuroImage, 20, 1346–1355.PubMedCrossRefGoogle Scholar
  41. Nichols, T., Brett, M., Andersson, J., Wager, T., & Poline, J. B. (2005). Valid conjunction inference with the minimum statistic. NeuroImage, 25, 653–660.PubMedCrossRefGoogle Scholar
  42. Norris, D. G. (2000). Reduced power multislice MDEFT imaging. Journal of Magnetic Resonance Imaging, 11, 445–451.PubMedCrossRefGoogle Scholar
  43. Norris, D. G., Zysset, S., Mildner, T., & Wiggins, C. J. (2002). An investigation of the value of spin-echo-based fMRI using a Stroop color—word matching task and EPI at 3 T. NeuroImage, 15, 719–726.PubMedCrossRefGoogle Scholar
  44. O’Doherty, J. P., Deichmann, R., Critchley, H. D., & Dolan, R. J. (2002). Neural responses during anticipation of a primary taste reward. Neuron, 33, 815–826.PubMedCrossRefGoogle Scholar
  45. Pandya, D. N., & Yeterian, E. H. (1985). Architecture and connections of cortical association areas. In A. Peters & E. G. Jones (Eds.), Cerebral cortex: Vol. 4. Association and auditory cortices (pp. 3–61). New York: Plenum.Google Scholar
  46. Plessner, H., Betsch, C., & Betsch, T. (Eds.) (2008). Intuition in judgment and decision making. Mahwah, NJ: Erlbaum.Google Scholar
  47. Raab, M., & Johnson, J. G. (2007). Expertise-based differences in search and option-generation strategies. Journal of Experimental Psychology: Applied, 13, 158–170.PubMedCrossRefGoogle Scholar
  48. Reber, R., Wurtz, P., & Zimmermann, T. D. (2004). Exploring “fringe” consciousness: The subjective experience of perceptual fluency and its objective bases. Consciousness & Cognition, 13, 47–60.CrossRefGoogle Scholar
  49. Roesch, M., & Schoenbaum, G. (2006). From associations to expectancies: Orbitofrontal cortex as gateway between the limbic system and representational memory. In D. H. Zald & S. L. Rauch (Eds.), The orbitofrontal cortex (pp. 199–235). Oxford: Oxford University Press.CrossRefGoogle Scholar
  50. Saddoris, M. P., Gallagher, M., & Schoenbaum, G. (2005). Rapid associative encoding in basolateral amygdala depends on connections with orbitofrontal cortex. Neuron, 46, 321–331.PubMedCrossRefGoogle Scholar
  51. Sadler-Smith, E. (2008). Inside intuition. London: Routledge.Google Scholar
  52. Schmidt, C. F., Boesiger, P., & Ishai, A. (2005). Comparison of fMRI activation as measured with gradient- and spin-echo EPI during visual perception. NeuroImage, 26, 852–859.PubMedCrossRefGoogle Scholar
  53. Schoenbaum, G., & Roesch, M. [R.] (2005). Orbitofrontal cortex, associative learning, and expectancies. Neuron, 47, 633–636.PubMedCrossRefGoogle Scholar
  54. Schoenbaum, G., Roesch, M. R., & Stalnaker, T. A. (2006). Orbitofrontal cortex, decision-making and drug addiction. Trends in Neurosciences, 29, 116–124.PubMedCrossRefGoogle Scholar
  55. Seltzer, B., & Pandya, D. N. (1989). Frontal lobe connections of the superior temporal sulcus in the rhesus monkey. Journal of Comparative Neurology, 281, 97–113.PubMedCrossRefGoogle Scholar
  56. Sridharan, D., Levitin, D. J., Chafe, C. H., Berger, J., & Menon, V. (2007). Neural dynamics of event segmentation in music: Converging evidence for dissociable ventral and dorsal networks. Neuron, 55, 521–532.PubMedCrossRefGoogle Scholar
  57. Stanovich, K. E., & West, R. F. (2000). Individual differences in reasoning: Implications for the rationality debate? Behavioral & Brain Sciences, 23, 645–665.CrossRefGoogle Scholar
  58. Talairach, J., & Tournoux, P. (1988). Co-planar stereotaxic atlas of the human brain: 3-dimensional proportional system. An approach to cerebral imaging. Stuttgart, Germany: Thieme.Google Scholar
  59. Thirion, J. P. (1998). Image matching as a diffusion process: An analogy with Maxwell’s demons. Medical Image Analysis, 2, 243–260.PubMedCrossRefGoogle Scholar
  60. Topolinski, S., & Strack, F. (2007, September). Analysis or intuition? Analysis and intuition! The use of cognitive feelings in intuitive judgments. Paper presented at the 11th Meeting of the Social Psychology Section of the German Association of Psychology, Freiburg, Germany.Google Scholar
  61. Topolinski, S., & Strack, F. (2008). Where there’s a will—there’s no intuition: The unintentional basis of semantic coherence judgments. Journal of Memory & Language, 58, 1032–1048.CrossRefGoogle Scholar
  62. Uğurbil, K., Garwood, M., Ellermann, J., Hendrich, K., Hinke, R., Hu, X., et al. (1993). Imaging at high magnetic fields: Initial experiences at 4 T. Magnetic Resonance Quarterly, 9, 259–277.PubMedGoogle Scholar
  63. Volz, K. G., & von Cramon, D. Y. (2006). What neuroscience can tell about intuitive processes in the context of perceptual discovery. Journal of Cognitive Neuroscience, 18, 2077–2087.PubMedCrossRefGoogle Scholar
  64. Worsley, K. J., & Friston, K. J. (1995). Analysis of fMRI time-series revisited—again. NeuroImage, 2, 173–181.PubMedCrossRefGoogle Scholar

Copyright information

© Psychonomic Society, Inc 2008

Authors and Affiliations

  • Kirsten G. Volz
    • 1
    • 2
  • Rudolf Rübsamen
    • 3
  • D. Yves von Cramon
    • 1
    • 2
  1. 1.Max Planck Institute for Neurological ResearchCologneGermany
  2. 2.Max Planck Institute for Human Cognitive and Brain SciencesLeipzigGermany
  3. 3.University of LeipzigLeipzigGermany

Personalised recommendations