Cognitive, Affective, & Behavioral Neuroscience

, Volume 7, Issue 4, pp 356–366 | Cite as

Conflict monitoring and decision making: Reconciling two perspectives on anterior cingulate function



According to one influential account, the anterior cingulate cortex (ACC) serves to monitor for conflicts in information processing. According to another influential account, the ACC monitors action outcomes and guides decision making. Both of these perspectives are supported by an abundance of data, making it untenable to reject one view in favor of the other. Instead, the apparent challenge is to discover how the two perspectives might fit together within a larger account. In the present article, we consider the prospects for such a reconciliation. Juxtaposing the conflict-monitoring and decision-making accounts suggests an extension of the conflict-monitoring theory, by which conflict would act as a teaching signal driving a form of avoidance learning. The effect of this mechanism would be to bias behavioral decision making toward cognitively efficient tasks and strategies. We discuss evidence favoring this proposal and present an initial computational model, which lays the foundation for further development.


  1. Allman, J. M., Hakeem, A., Erwin, J. M., Nimchinsky, E., & Hof, P. (2001). The anterior cingulate cortex. The evolution of an interface between emotion and cognition. In A. R. Damasio, A. Harrington, J. Kagan, B. McEwen, H. Moss, & R. Shaikh (Eds.), Unity of knowledge: The convergence of natural and human science (Annals of the New York Academy of Sciences, Vol. 935, pp. 107–117). New York: New York Academy of Sciences.Google Scholar
  2. Allport, G. W. (1954). The nature of prejudice. Reading, MA: Addison-Wesley.Google Scholar
  3. Amiez, C., Joseph, J.-P., & Procyk, E. (2005). Anterior cingulate errorrelated activity is modulated by predicted reward. European Journal of Neuroscience, 21, 3447–3452.PubMedCrossRefGoogle Scholar
  4. Aston-Jones, G., & Cohen, J. D. (2005). An integrative theory of locus coeruleus-norepinephrine function: Adaptive gain and optimal performance. Annual Review of Neuroscience, 28, 403–450.PubMedCrossRefGoogle Scholar
  5. Badre, D., & Wagner, A. D. (2004). Selection, integration, and conflict monitoring: Assessing the nature and generality of prefrontal cognitive control mechanisms. Neuron, 41, 473–487.PubMedCrossRefGoogle Scholar
  6. Balle, M. (2002). La loi du moindre effort mental: Les representations mentales. Sciences Humaines, 128, 36–39.Google Scholar
  7. Barch, D. M., Braver, T. S., Akbudak, E., Conturo, T., Ollinger, J., & Snyder, A. (2001). Anterior cingulate cortex and response conflict: Effects of response modality and processing domain. Cerebral Cortex, 11, 837–848.PubMedCrossRefGoogle Scholar
  8. Barch, D. M., Braver, T. S., Sabb, F. W., & Noll, D. C. (2000). Anterior cingulate and the monitoring of response conflict: Evidence from an fMRI study of overt verb generation. Journal of Cognitive Neuroscience, 12, 298–309.PubMedCrossRefGoogle Scholar
  9. Baroody, A. J., & Ginsburg, H. P. (1986). The relationship between initial meaningful and mechanical knowledge of arithmetic. In J. Hiebert (Ed.), Conceptual and procedural knowledge: The case of mathematics (pp. 75–112). Hillsdale, NJ: Erlbaum.Google Scholar
  10. Bechara, A., Damasio, H., Damasio, A. R., & Lee, G. P. (1999). Different contributions of the human amygdala and ventromedial prefrontal cortex to decision-making. Journal of Neuroscience, 19, 5473–5481.PubMedGoogle Scholar
  11. Bechara, A., Tranel, D., Damasio, H., & Damasio, A. R. (1996). Failure to respond autonomically to anticipated future outcomes following damage to prefrontal cortex. Cerebral Cortex, 6, 215–225.PubMedCrossRefGoogle Scholar
  12. Beninger, R. J. (1989). The role of serotonin and dopamine in learning to avoid aversive stimuli. In T. Archer & L.-G. Nilsson (Eds.), Aversion, avoidance and anxiety (pp. 265–284). Hillsdale, NJ: Erlbaum.Google Scholar
  13. Bogacz, R., & Gurney, K. (2007). The basal ganglia and cortex implement optimal decision making between alternative actions. Neural Computation, 19, 442–477.PubMedCrossRefGoogle Scholar
  14. Botvinick, M. M., Braver, T. S., Barch, D. M., Carter, C. S., & Cohen, J. D. (2001). Conflict monitoring and cognitive control. Psychological Review, 108, 624–652.PubMedCrossRefGoogle Scholar
  15. Botvinick, M. M., Cohen, J. D., & Carter, C. S. (2004). Conflict monitoring and anterior cingulate cortex: An update. Trends in Cognitive Sciences, 8, 539–546.PubMedCrossRefGoogle Scholar
  16. Botvinick, M. [M.], & Huffstetler, S. (2007a, June). Differential neural responses to hard- versus easily earned rewards. Paper presented at the Thirteenth Annual Meeting of the Organization for Human Brain Mapping, Chicago.Google Scholar
  17. Botvinick, M. [M.], & Huffstetler, S. (2007b). Effort discounting in human nucleus accumbens. Manuscript submitted for publication.Google Scholar
  18. Botvinick, M. [M.], Jha, A. P., Bylsma, L. M., Fabian, S. A., Solomon, P. E., & Prkachin, K. M. (2005). Viewing facial expressions of pain engages cortical areas involved in the direct experience of pain. NeuroImage, 25, 312–319.PubMedCrossRefGoogle Scholar
  19. Botvinick, M. [M.], Nystrom, L. E. Fissell, K., Carter, C. S., & Cohen, J. D. (1999). Conflict monitoring versus selection-for-action in anterior cingulate cortex. Nature, 402, 179–181.PubMedCrossRefGoogle Scholar
  20. Botvinick, M. [M.], & Rosen, Z. (2007, May). Is mental effort aversive? Some behavioral and psychophysiological evidence. Paper presented at the Cognitive Neuroscience Society Annual Meeting, New York.Google Scholar
  21. Botvinick, M. M., Rosen, Z., & Maguire, J. T. (2007). Action selection based on anticipated cognitive demand: A test of “the law of least mental effort.” Manuscript submitted for publication.Google Scholar
  22. Braver, T. S., Barch, D. M., Gray, J. R., Molfese, D. L., & Snyder, A. (2001). Anterior cingulate cortex and response conflict: Effects of frequency, inhibition and errors. Cerebral Cortex, 11, 825–836.PubMedCrossRefGoogle Scholar
  23. Brown, J. W., & Braver, T. S. (2005). Learned predictions of error likelihood in the anterior cingulate cortex. Science, 307, 1118–1121.PubMedCrossRefGoogle Scholar
  24. Brown, J. W., & Braver, T. S. (2007). Risk prediction and aversion by anterior cingulate cortex. Cognitive, Affective, & Behavioral Neuroscience, 7, 266–277.CrossRefGoogle Scholar
  25. Bunge, S. A., Hazeltine, E., Scanlon, M. D., Rosen, A. C., & Gabrieli, J. D. E. (2002). Dissociable contributions of prefrontal and parietal cortices to response selection. NeuroImage, 17, 1562–1571.PubMedCrossRefGoogle Scholar
  26. Bush, G., Vogt, B. A., Holmes, J., Dale, A. M., Greve, D., Jenike, M. A., & Rosen, B. R. (2002). Dorsal anterior cingulate cortex: A role in reward-based decision making. Proceedings of the National Academy of Sciences, 99, 523–528.CrossRefGoogle Scholar
  27. Cacioppo, J. T., Petty, R. E., Feinstein, J. A., & Jarvis, W. B. G. (1996). Dispositional differences in cognitive motivation: The life and times of individuals varying in need for cognition. Psychological Bulletin, 119, 197–253.CrossRefGoogle Scholar
  28. Carter, C. S., Braver, T. S., Barch, D. M., Botvinick, M. M., Noll, D., & Cohen, J. D. (1998). Anterior cingulate cortex, error detection, and the online monitoring of performance. Science, 280, 747–749.PubMedCrossRefGoogle Scholar
  29. Casey, B. J., Thomas, K. M., Welsh, T. F., Badgaiyan, R. D., Eccard, C. H., Jennings, J. R., & Crone, E. A. (2000). Dissociation of response conflict, attentional selection, and expectancy with functional magnetic resonance imaging. Proceedings of the National Academy of Sciences, 97, 8728–8733.CrossRefGoogle Scholar
  30. Christenfeld, N. (1995). Choices from identical options. Psychological Science, 6, 50–55.CrossRefGoogle Scholar
  31. Cohen, J. D., Dunbar, K., & McClelland, J. L. (1990). On the control of automatic processes: A parallel distributed processing account of the Stroop effect. Psychological Review, 97, 332–361.PubMedCrossRefGoogle Scholar
  32. Davis, K. D., Hutchison, W. D., Lozano, A. M., Tasker, R. R., & Dostrovsky, J. O. (2000). Human anterior cingulate cortex neurons modulated by attention-demanding tasks. Journal of Neurophysiology, 83, 3575–3577.PubMedGoogle Scholar
  33. Davis, K. D., Taylor, K. S., Hutchison, W. D., Dostrovsky, J. O., McAndrews, M. P., Richter, E. O., & Lozano, A. M. (2005). Human anterior cingulate cortex neurons encode cognitive and emotional demands. Journal of Neuroscience, 25, 8402–8406.PubMedCrossRefGoogle Scholar
  34. de Zubicaray, G. I., Andrew, C., Zelaya, F. O., Williams, S. C., & Dumanoir, C. (2000). Motor response suppression and the prepotent tendency to respond: A parametric fMRI study. Neuropsychologia, 38, 1280–1291.PubMedCrossRefGoogle Scholar
  35. di Pellegrino, G., Ciaramelli, E., & Làdavas, E. (2007). The regulation of cognitive control following rostral anterior cingulate cortex lesion in humans. Journal of Cognitive Neuroscience, 19, 275–286.PubMedCrossRefGoogle Scholar
  36. Durston, S., Davidson, M. C., Thomas, K. M., Worden, M. S., Tottenham, N., Martinez, A., et al. (2003). Parametric manipulation of conflict and response competition using rapid mixed-trial eventrelated fMRI. NeuroImage, 20, 2135–2141.PubMedCrossRefGoogle Scholar
  37. Durston, S., Thomas, K. M., Worden, M. S., Yang, Y., & Casey, B. J. (2002). The effect of preceding context on inhibition: An event-related fMRI study. NeuroImage, 16, 449–453.PubMedCrossRefGoogle Scholar
  38. Egner, T. (2007). Congruency sequence effects and cognitive control. Cognitive, Affective, & Behavioral Neuroscience, 7, 380–390.CrossRefGoogle Scholar
  39. Eisenberger, N. I., Lieberman, M. D., & Williams, K. D. (2003). Does rejection hurt? An fMRI study of social exclusion. Science, 302, 290–292.PubMedCrossRefGoogle Scholar
  40. Falkenstein, M., Hoormann, J., Christ, S., & Hohnsbein, J. (2000). ERP components on reaction errors and their functional significance: A tutorial. Biological Psychology, 51, 87–107.PubMedCrossRefGoogle Scholar
  41. Fellows, L. K., & Farah, M. J. (2005). Is anterior cingulate cortex necessary for cognitive control? Brain, 128, 788–796.PubMedCrossRefGoogle Scholar
  42. Ferrer i Cancho, R., & Sole, R. V. (2003). Least effort and the origins of scaling in human language. Proceedings of the National Academy of Sciences, 100, 788–791.CrossRefGoogle Scholar
  43. Frank, M. J. (2005a). Dynamic dopamine modulation in the basal ganglia: A neurocomputational account of cognitive deficits in medicated and nonmedicated Parkinsonism. Journal of Cognitive Neuroscience, 17, 51–72.PubMedCrossRefGoogle Scholar
  44. Frank, M. J. (2005b). Error-related negativity predicts reinforcement learning and conflict biases. Neuron, 47, 495–501.PubMedCrossRefGoogle Scholar
  45. Frank, M. J. (2006). Hold your horses: A dynamic computational role for the subthalamic nucleus in decision making. Neural Networks, 19, 1120–1136.PubMedCrossRefGoogle Scholar
  46. Frank, M. J., & Claus, E. D. (2006). Anatomy of a decision: Striatoorbitofrontal interactions in reinforcement learning, decision making, and reversal. Psychological Review, 113, 300–326.PubMedCrossRefGoogle Scholar
  47. Frith, C. D., Friston, K., Liddle, P. F., & Frackowiak, R. S. (1991). Willed action and the prefrontal cortex in man: A study with PET. Proceedings of the Royal Society B, 244, 241–246.PubMedCrossRefGoogle Scholar
  48. Gabriel, M. (1993). Discriminative avoidance learning: A model system. In B. A. Vogt & M. Gabriel (Eds.), Neurobiology of cingulate cortex and limbic thalamus: A comprehensive handbook (pp. 478–523). Boston: Birkhäuser.Google Scholar
  49. Gariano, R. F., & Groves, P. M. (1988). Burst firing in midbrain dopamine neurons by stimulation of the medial prefrontal and anterior cingulate cortices. Brain Research, 462, 194–198.PubMedCrossRefGoogle Scholar
  50. Gehring, W. J., & Willoughby, A. R. (2002). The medial frontal cortex and the rapid processing of monetary gains and losses. Science, 295, 2279–2282.PubMedCrossRefGoogle Scholar
  51. Gilbert, S. J., & Shallice, T. (2002). Task switching: A PDP model. Cognitive Psychology, 44, 297–337.PubMedCrossRefGoogle Scholar
  52. Gratton, G., Coles, M. G. H., & Donchin, E. (1992). Optimizing the use of information: Strategic control of activation of responses. Journal of Experimental Psychology: General, 121, 480–506.CrossRefGoogle Scholar
  53. Hadland, K. A., Rushworth, M. F., Gaffan, D., & Passingham, R. E. (2003). The anterior cingulate and reward-guided selection of actions. Journal of Neurophysiology, 89, 1161–1164.PubMedCrossRefGoogle Scholar
  54. Hazeltine, E., Poldrack, R., & Gabrieli, J. D. E. (2000). Neural activation during response competition. Journal of Cognitive Neuroscience, 12(Suppl. 2), 118–129.PubMedCrossRefGoogle Scholar
  55. Holroyd, C. B., & Coles, M. G. H. (2002). The neural basis of human error processing: Reinforcement learning, dopamine, and the errorrelated negativity. Psychological Review, 109, 679–709.PubMedCrossRefGoogle Scholar
  56. Holroyd, C. B., Nieuwenhuis, S., Yeung, N., & Cohen, J. D. (2003). Errors in reward prediction are reflected in the event-related brain potential. NeuroReport, 14, 2481–2484.PubMedCrossRefGoogle Scholar
  57. Holroyd, C. B., Nieuwenhuis, S., Yeung, N., Nystrom, L., Mars, R. B., Coles, M. G. H., & Cohen, J. D. (2004). Dorsal anterior cingulate cortex shows fMRI response to internal and external error signals. Nature Neuroscience, 7, 497–498.PubMedCrossRefGoogle Scholar
  58. Hull, C. L. (1943). Principles of behavior. New York: Appleton-Century.Google Scholar
  59. Ito, S., Stuphorn, V., Brown, J. W., & Schall, J. D. (2003). Performance monitoring by the anterior cingulate cortex during saccade countermanding. Science, 302, 120–122.PubMedCrossRefGoogle Scholar
  60. Jackson, M. E., Frost, A. S., & Moghaddam, B. (2001). Stimulation of prefrontal cortex at physiologically relevant frequencies inhibits dopamine release in the nucleus accumbens. Journal of Neurochemistry, 78, 920–923.PubMedCrossRefGoogle Scholar
  61. Johansen, J. P., & Fields, H. L. (2004). Glutamatergic activation of anterior cingulate cortex produces an aversive teaching signal. Nature Neuroscience, 7, 398–403.PubMedCrossRefGoogle Scholar
  62. Jones, A. D., Cho, R. Y., Nystrom, L. E., Cohen, J. D., & Braver, T. S. (2002). A computational model of anterior cingulate function in speeded response tasks: Effects of frequency, sequence, and conflict. Cognitive, Affective, & Behavioral Neuroscience, 2, 300–317.CrossRefGoogle Scholar
  63. Kerns, J. G. (2006). Anterior cingulate and prefrontal cortex activity in an fMRI study of trial-to-trial adjustments on the Simon task. NeuroImage, 15, 399–405.CrossRefGoogle Scholar
  64. Kerns, J. G., Cohen, J. D., MacDonald, A. W., III, Cho, R. Y., Stenger, V. A., & Carter, C. S. (2004). Anterior cingulate conflict monitoring and adjustments in control. Science, 303, 1023–1026.PubMedCrossRefGoogle Scholar
  65. Kiehl, K. A., Liddle, P. F., & Hopfinger, J. B. (2000). Error processing and the rostral anterior cingulate: An event-related fMRI study. Psychophysiology, 37, 216–223.PubMedCrossRefGoogle Scholar
  66. Kim, H., Shimojo, S., & O’Doherty, J. (2006). Is avoiding an aversive outcome rewarding? Neural substrates of avoidance learning in the human brain. PLOS Biology, 4, 1453–1461.Google Scholar
  67. Luu, P., Tucker, D. M., Derryberry, D., Reed, M., & Poulsen, C. (2003). Electrophysiological responses to errors and feedback in the process of action regulation. Psychological Science, 14, 47–53.PubMedCrossRefGoogle Scholar
  68. Lux, S., Marshall, J. C., Ritzl, A., Weiss, P. H., Pietrzyk, U., Shah, N. J., et al. (2004). A functional magnetic resonance imaging study of local/global processing with stimulus presentation in the peripheral visual hemifields. Neuroscience, 124, 113–120.PubMedCrossRefGoogle Scholar
  69. MacLean, P. D. (1990). The triune brain in evolution: Role in paleocerebral functions. New York: Plenum.Google Scholar
  70. MacLeod, C. M., Hunt, E. B., & Mathews, N. N. (1978). Individual differences in the verification of sentence—picture relationships. Journal of Verbal Learning & Verbal Behavior, 17, 493–507.CrossRefGoogle Scholar
  71. MacLeod, C. M., & MacDonald, P. A. (2000). Interdimensional interference in the Stroop effect: Uncovering the cognitive and neural anatomy of attention. Trends in Cognitive Sciences, 4, 383–391.PubMedCrossRefGoogle Scholar
  72. Mathews, N. N., Hunt, E. B., & MacLeod, C. M. (1980). Strategy choice and strategy training in sentence—picture verification. Journal of Verbal Learning & Verbal Behavior, 19, 531–548.CrossRefGoogle Scholar
  73. Matsumoto, K., Suzuki, W., & Tanaka, K. (2003). Neural correlates of goal-based motor selection in the prefrontal cortex. Science, 301, 229–232.PubMedCrossRefGoogle Scholar
  74. Mayr, U., Awh, E., & Laurey, P. (2003). Conflict adaptation effects in the absence of executive control. Nature Neuroscience, 6, 450–452.PubMedGoogle Scholar
  75. McGuire, W. J. (1969). The nature of attitudes and attitude change. In G. Lindzey & E. Aronson (Eds.), The handbook of social psychology (Vol. 3, pp. 136–314). Reading, MA: Addison-Wesley.Google Scholar
  76. Mesulam, M. M. (1981). A cortical network for directed attention and unilateral neglect. Annals of Neurology, 10, 309–325.PubMedCrossRefGoogle Scholar
  77. Miller, E. K., & Cohen, J. D. (2001). An integrative theory of prefrontal cortex function. Annual Review of Neuroscience, 24, 167–202.PubMedCrossRefGoogle Scholar
  78. Miltner, W. H. R., Braun, C. H., & Coles, M. G. H. (1997). Eventrelated brain potentials following incorrect feedback in a time-estimation task: Evidence for a “generic” neural system for error detection. Journal of Cognitive Neuroscience, 9, 788–798.CrossRefGoogle Scholar
  79. Monsell, S. (2003). Task switching. Trends in Cognitive Sciences, 7, 134–140.PubMedCrossRefGoogle Scholar
  80. Murase, S., Grenhoff, J., Chouvet, G., Gonon, F. G., & Svensson, T. H. (1993). Prefrontal cortex regulates burst firing and transmitter release in rat mesolimbic dopamine neurons studied in vivo. Neuroscience Letters, 157, 53–56.PubMedCrossRefGoogle Scholar
  81. Nachev, P. (2006). Cognition and medial frontal cortex in health and disease. Current Opinion in Neurology, 19, 587–592.CrossRefGoogle Scholar
  82. Nakamura, K., Roesch, M. R., & Olson, C. R. (2005). Neuronal activity in macaque SEF and ACC during performance of tasks involving conflict. Journal of Neurophysiology, 93, 884–908.PubMedCrossRefGoogle Scholar
  83. Nieuwenhuis, S., Schweizer, T. S., Mars, R. B., Botvinick, M. M., & Hajcak, G. (2007). Error-likelihood prediction in the medial frontal cortex: A critical evaluation. Cerebral Cortex, 17, 1570–1581.PubMedCrossRefGoogle Scholar
  84. Nieuwenhuis, S., Yeung, N., Holroyd, C. B., Schurger, A., & Cohen, J. D. (2004). Sensitivity of electrophysiological activity from medial frontal cortex to utilitarian and performance feedback. Cerebral Cortex, 14, 741–747.PubMedCrossRefGoogle Scholar
  85. Notebaert, W., & Verguts, T. (2007). Dissociating conflict adaptation from feature integration: A multiple regression approach. Journal of Experimental Psychology: Human Perception & Performance, 33, 1256–1260.CrossRefGoogle Scholar
  86. Palmer, E. D., Rosen, H. J., Ojemann, J. G., Buckner, R. L., Kelley, W. M., & Petersen, S. E. (2001). An event-related fMRI study of overt and covert word stem completion. NeuroImage, 14, 182–193.PubMedCrossRefGoogle Scholar
  87. Papez, J. W. (1937). A proposed mechanism of emotion. Archives of Neurology & Psychiatry, 38, 725–743.Google Scholar
  88. Paus, T., Petrides, M., Evans, A. C., & Meyer, E. (1993). Role of the human anterior cingulate cortex in the control of oculomotor, manual, and speech responses: A positron emission tomography study. Journal of Neurophysiology, 70, 453–469.PubMedGoogle Scholar
  89. Peterson, B. S., Kane, M. J., Alexander, G. M., Lacadie, C., Skudlarski, P., Leung, H. C., et al. (2002). An event-related functional MRI study comparing interference effects in the Simon and Stroop tasks. Cognitive Brain Research, 13, 427–440.PubMedCrossRefGoogle Scholar
  90. Rainville, P. (2002). Brain mechanisms of pain affect and pain modulation. Current Opinion in Neurobiology, 12, 195–204.PubMedCrossRefGoogle Scholar
  91. Reichle, E. D., Carpenter, P. A., & Just, M. A. (2000). The neural bases of strategy and skill in sentence—picture verification. Cognitive Psychology, 40, 261–295.PubMedCrossRefGoogle Scholar
  92. Ridderinkhof, K. R., Ullsperger, M., Crone, E. A., & Nieuwenhuis, S. (2004). The role of the medial frontal cortex in cognitive control. Science, 306, 443–447.PubMedCrossRefGoogle Scholar
  93. Rosch, E. (1999). Principles of categorization. In E. Margolis & S. Laurence (Eds.), Concepts: Core readings (pp. 189–206). Cambridge, MA: MIT Press.Google Scholar
  94. Rushworth, M. F. S., Hadland, K. A., Paus, T., & Sipila, P. K. (2002). The role of the human medial frontal cortex in task switching: A combined fMRI and TMS study. Journal of Neurophysiology, 87, 2577–2592.PubMedGoogle Scholar
  95. Rushworth, M. F. S., Walton, M. E., Kennerley, S. W., & Bannerman, D. M. (2004). Action sets and decisions in the medial frontal cortex. Trends in Cognitive Sciences, 8, 410–417.PubMedCrossRefGoogle Scholar
  96. Singer, T., Seymour, B., O’Doherty, J., Kaube, H., Dolan, R. J., & Frith, C. D. (2004). Empathy for pain involves affective but not sensory components of pain. Science, 303, 1157–1162.PubMedCrossRefGoogle Scholar
  97. Solomon, R. L. (1948). The influence of work on behavior. Psychological Bulletin, 45, 1–40.PubMedCrossRefGoogle Scholar
  98. Stuphorn, V., Taylor, T. L., & Schall, J. D. (2000). Performance monitoring by the supplementary eye field. Nature, 408, 857–860.PubMedCrossRefGoogle Scholar
  99. Stürmer, B., Leuthold, H., Soetens, E., Schroeter, H., & Sommer, W. (2002). Control over location-based response activation in the Simon task: Behavioral and electrophysiological evidence. Journal of Experimental Psychology: Human Perception & Performance, 28, 1345–1363.CrossRefGoogle Scholar
  100. Svensson, T. H., & Tung, C. S. (1989). Local cooling of pre-frontal cortex induces pacemaker-like firing of dopamine neurons in rat tegmental area in vivo. Acta Psychologica Scandinavica, 136, 135–136.CrossRefGoogle Scholar
  101. Thompson-Schill, S. L., D’Esposito, M., Aguirre, G. K., & Farah, M. J. (1997). Role of left inferior prefrontal cortex in retrieval of semantic knowledge: A reevaluation. Proceedings of the National Academy of Sciences, 94, 14792–14797.CrossRefGoogle Scholar
  102. Tong, Z. Y., Overton, P. G., & Clark, D. (1996). Stimulation of the prefrontal cortex in the rat induces patterns of activity in midbrain dopaminergic neurons which resemble natural burst events. Synapse, 22, 195–208.PubMedCrossRefGoogle Scholar
  103. Ullsperger, M., Bylsma, L. M., & Botvinick, M. M. (2005). The conflict adaptation effect: It’s not just priming. Cognitive, Affective, & Behavioral Neuroscience, 5, 467–472.CrossRefGoogle Scholar
  104. Ungless, M. A., Magill, P. J., & Bolam, J. P. (2004). Uniform inhibition of dopamine neurons in the ventral tegmental area by aversive stimuli. Science, 303, 2040–2042.PubMedCrossRefGoogle Scholar
  105. van Veen, V., Cohen, J. D., Botvinick, M. M., Stenger, V. A., & Carter, C. S. (2001). Anterior cingulate cortex, conflict monitoring, and levels of processing. NeuroImage, 14, 1302–1308.PubMedCrossRefGoogle Scholar
  106. van Veen, V., Holroyd, C. B., Cohen, J. D., Stenger, V. A., & Carter, C. S. (2004). Errors without conflict: Implications for performance monitoring theories of anterior cingulate cortex. Brain & Cognition, 56, 267–276.CrossRefGoogle Scholar
  107. Walton, M. E., Bannerman, D. M., Alterescu, K., & Rushworth, M. F. (2003). Functional specialization within medial frontal cortex of the anterior cingulate for evaluating effort-related decisions. Journal of Neuroscience, 23, 6475–6479.PubMedGoogle Scholar
  108. Walton, M. E., Bannerman, D. M., & Rushworth, M. F. (2002). The role of rat medial frontal cortex in effort-based decision making. Journal of Neuroscience, 22, 10996–11003.PubMedGoogle Scholar
  109. Walton, M. E., Kennerley, S. W., Bannerman, D. M., Phillips, P. E. M., & Rushworth, M. F. (2006). Weighing up the benefits of work: Behavioral and neural analyses of effort-related decision making. Neural Networks, 19, 1302–1314.PubMedCrossRefGoogle Scholar
  110. Waszak, F., Hommel, B., & Allport, A. (2003). Task-switching and long-term priming: Role of episodic stimulus—task bindings in taskshift costs. Cognitive Psychology, 46, 361–413.PubMedCrossRefGoogle Scholar
  111. Weissman, D. H., Giesbrecht, B., Song, A. W., Mangun, G. R., & Woldorff, M. G. (2003). Conflict monitoring in the human anterior cingulate cortex during selective attention to global and local object features. NeuroImage, 19, 1361–1368.PubMedCrossRefGoogle Scholar
  112. Yeung, N., Botvinick, M. M., & Cohen, J. D. (2004). The neural basis of error-detection: Conflict monitoring and the error-related negativity. Psychological Review, 111, 931–959.PubMedCrossRefGoogle Scholar
  113. Yeung, N., & Sanfey, A. G. (2004). Independent coding of reward magnitude and valence in the human brain. Journal of Neuroscience, 24, 6258–6264.PubMedCrossRefGoogle Scholar
  114. Zipf, G. K. (1949). Human behavior and the principle of least effort: An introduction to human ecology. Cambridge, MA: Addison-Wesley.Google Scholar

Copyright information

© Psychonomic Society, Inc. 2007

Authors and Affiliations

  1. 1.Princeton UniversityPrinceton UniversityPrinceton

Personalised recommendations