Processing emotional pictures and words: Effects of valence and arousal

Article
  • 2.9k Downloads

Abstract

There is considerable debate regarding the extent to which limbic regions respond differentially to items with different valences (positive or negative) or to different stimulus types (pictures or words). In the present event-related fMRI study, 21 participants viewed words and pictures that were neutral, negative, or positive. Negative and positive items were equated on arousal. The participants rated each item for whether it depicted or described something animate or inanimate or something common or uncommon. For both pictures and words, the amygdala, dorsomedial prefrontal cortex (PFC), and ventromedial PFC responded equally to all high-arousal items, regardless of valence. Laterality effects in the amygdala were based on the stimulus type (word 5 left, picture 5 bilateral). Valence effects were most apparent when the individuals processed pictures, and the results revealed a lateral/medial distinction within the PFC: The lateral PFC responded differentially to negative items, whereas the medial PFC was more engaged during the processing of positive pictures.

References

  1. Adolphs, R., Tranel, D., Damasio, H., & Damasio, A. R. (1995). Fear and the human amygdala. Journal of Neuroscience, 15, 5879–5891.PubMedGoogle Scholar
  2. Aftanas, L. I., Varlamov, A. A., Pavlov, S. V., Makhnev, V. P., & Reva, N. V. (2001). Affective picture processing: Event-related synchronization within individually defined human theta band is modulated by valence dimension. Neuroscience Letters, 303, 115–118.CrossRefPubMedGoogle Scholar
  3. Anders, S., Lotze, M., Erb, M., Grodd, W., & Girbaumer, N. (2004). Brain activity underlying emotional valence and arousal: A responserelated fMRI study. Human Brain Mapping, 23, 200–209.CrossRefPubMedGoogle Scholar
  4. Anderson, A. K., Christoff, K., Stappen, I., Panitz, D., Ghahremani, D. G., Glover, G., et al. (2003). Dissociated neural representations of intensity and valence in human ol faction. Nature Neuroscience, 6, 196–202.CrossRefPubMedGoogle Scholar
  5. Baas, D., Aleman, A., & Kahn, R. S. (2004). Lateralization of amygdala activation: A systematic review of functional neuroimaging studies. Brain Research Reviews, 45, 96–103.CrossRefPubMedGoogle Scholar
  6. Bowers, D., Bauer, R. M., Coslett, H. B., & Heilman, K. M. (1985). Processing of face by patients with unilateral hemisphere lesions: Dissociations between judgments of facial affect and facial identity. Brain & Cognition, 4, 258–272.CrossRefGoogle Scholar
  7. Bradley, M. M., & Lang, P. J. (1999). Affective norms for English words [CD-ROM]. Gainesville: University of Florida, NIMH Center for the Study of Emotion and Attention.Google Scholar
  8. Breiter, H. C., Etcoff, N. L., Whalen, P. J., Kennedy, W. A., Rauch, S. L., Buckner, R. L., et al. (1996). Response and habituation of the human amygdala during visual processing of facial expression. Neuron, 17, 875–887.CrossRefPubMedGoogle Scholar
  9. Broks, P., Young, A. W., Maratos, E. J., Coffey, P. J., Calder, A. J., Isaac, C. L., et al. (1998). Face processing impairments after encephalitis: Amygdala damage and recognition of fear. Neuropsychologia, 36, 59–70.CrossRefPubMedGoogle Scholar
  10. Cahill, L. (2003). Sex- and hemisphere-related influences on the neurobiology of emotionally influenced memory. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 27, 1235–1241.CrossRefGoogle Scholar
  11. Canli, T., Desmond, J. E., Zhao, Z., Glover, G., & Gabrieli, J. D. E. (1998). Hemispheric asymmetry for emotional stimuli detected with fMRI. NeuroReport, 9, 3233–3239.CrossRefPubMedGoogle Scholar
  12. Collins, D. L., Zijdenbos, A. P., Kollokian, V., Sled, J. G., Kabani, N. J., Holmes, C. J., & Evans, A. C. (1998). Design and construction of a realistic digital brain phantom. IEEE Transactions on Medical Imaging, 17, 463–468.CrossRefPubMedGoogle Scholar
  13. Coltheart, M. (1981). The MRC psycholinguistic database. Quarterly Journal of Experimental Psychology, 33A, 497–505.Google Scholar
  14. Cunningham, W. A., Raye, C. L., & Johnson, M. K. (2004). Implicit and explicit evaluation: fMRI correlates of valence, emotional intensity, and control in the processing of attitudes. Journal of Cognitive Neuroscience, 16, 1717–1729.CrossRefPubMedGoogle Scholar
  15. Dale, A. M. (1999). Optimal experimental design for event-related fMRI. Human Brain Mapping, 8, 109–114.CrossRefPubMedGoogle Scholar
  16. Davidson, R. J. (1995). Cerebral asymmetry, emotion, and affective style. In R. J. Davidson & K. Hugdahl (Eds.), Brain asymmetry (pp. 361–387). Cambridge, MA: MIT Press.Google Scholar
  17. Davidson, R. J., & Irwin, W. (1999). The functional neuroanatomy of emotion and affective style. Trends in Cognitive Sciences, 3, 11–20.CrossRefPubMedGoogle Scholar
  18. Dolan, R. J., Lane, L., Chua, P., & Fletcher, P. (2000). Dissociable temporal lobe activations during emotional episodic memory retrieval. NeuroImage, 11, 203–209.CrossRefPubMedGoogle Scholar
  19. Dolcos, F., LaBar, K. S., & Cabeza, R. (2004). Dissociable effects of arousal and valence on prefrontal activity indexing emotional evaluation and subsequent memory: An event-related fMRI study. Neuro-Image, 23, 64–74.PubMedGoogle Scholar
  20. Fisher, R. A. (1950). Statistical methods for research workers. London: Oliver & Boyd.Google Scholar
  21. Garavan, H., Pendergrass, J. C., Ross, T. J., Stein, E. A., & Risinger, R. C. (2001). Amygdala response to both positively and negatively valenced stimuli. NeuroReport, 12, 2779–2783.CrossRefPubMedGoogle Scholar
  22. George, M. S., Ketter, T. A., & Post, R. M. (1993). SPECT and PET imaging in mood disorders. Journal of Clinical Psychiatry, 54, 6–13.PubMedGoogle Scholar
  23. Glascher, J., & Adolphs, R. (2003). Processing of the arousal of subliminal and supraliminal emotional stimuli by the human amygdala. Journal of Neuroscience, 23, 2779–2783.Google Scholar
  24. Hamann, S. [B.] (2001). Cognitive and neural mechanisms of emotional memory. Trends in Cognitive Sciences, 5, 394–400.CrossRefPubMedGoogle Scholar
  25. Hamann, S. B., Ely, T. D., Grafton, S. T., & Kilts, C. D. (1999). Amygdala activity related to enhanced memory for pleasant and aversive stimuli. Nature Neuroscience, 2, 289–293.CrossRefPubMedGoogle Scholar
  26. Hamann, S. B., Ely, T. D., Hoffman, J. M., & Kilts, C. D. (2002). Ecstasy and agony: Activation of the human amygdala in positive and negative emotion. Psychological Science, 13, 135–141.CrossRefPubMedGoogle Scholar
  27. Hamann, S. [B.], & Mao, H. (2002). Positive and negative emotional verbal stimuli elicit activity in the left amygdala. NeuroReport, 13, 15–19.CrossRefPubMedGoogle Scholar
  28. Hariri, A. R., Bookheimer, S. Y., & Mazziotta, J. C. (2000). Modulating emotional responses: Effects of a neocortical network on the limbic system. NeuroReport, 11, 43–48.CrossRefPubMedGoogle Scholar
  29. Harrington, A. (1995). Unfinished business: Models of laterality in the nineteenth century. In R. J. Davidson & K. Hugdahl (Eds.), Brain asymmetry (pp. 3–27). Cambridge, MA: MIT Press.Google Scholar
  30. Hellige, J. B. (1993). Hemispheric asymmetry. Cambridge, MA: Harvard University Press.Google Scholar
  31. Hutcherson, C. A., Goldin, P. R., Ochsner, K. N., Gabrieli, J. D. [E.], Barrett, L. F., & Gross, J. J. (2005). Attention and emotion: Does rating emotion alter neural responses to amusing and sad films? NeuroImage, 27, 656–668.CrossRefPubMedGoogle Scholar
  32. Irwin, W., Davidson, R. J., Lowe, M. J., Mock, B. J., Sorenson, J. A., & Turski, P. A. (1996). Human amygdala activation detected with echo-planar functional magnetic resonance imaging. NeuroReport, 7, 1765–1769.CrossRefPubMedGoogle Scholar
  33. Johnstone, T., Somerville, L. H., Alexander, A. L., Oakes, T. R., Davidson, R. J., Kalin, N. H., & Whalen, P. J. (2005). Stability of amygdala BOLD response to fearful faces over multiple scan sessions. NeuroImage, 25, 1112–1123.CrossRefPubMedGoogle Scholar
  34. Kensinger, E. A. (in press). Neuroimaging the formation and retrieval of emotional memories. In Brain mapping: New research. Hauppauge, NY: Nova Science.Google Scholar
  35. Kim, H., Somerville, L. H., Johnstone, T., Alexander, A. L., & Whalen, P. J. (2003). Inverse amygdala and medial prefrontal cortex responses to surprised faces. NeuroReport, 14, 2317–2322.CrossRefPubMedGoogle Scholar
  36. Lane, R. D., Fink, G. R., Chau, P. M.-L., & Dolan, R. J. (1997). Neural activation during selective attention to subjective emotional responses. NeuroReport, 8, 3969–3972.CrossRefPubMedGoogle Scholar
  37. Lane, R. D., Reiman, E. M., Bradley, M. M., Lang, P. J., Ahern, G. L., Davidson, R. J., & Schwartz, G. E. (1997). Neuroanatomical correlates of pleasant and unpleasant emotion. Neuropsychologia, 35, 1437–1444.CrossRefPubMedGoogle Scholar
  38. Lang, P. J., Bradley, M. M., & Cuthbert, B. N. (1997). International affective picture system (IAPS): Technical manual and affective ratings. Gainesville: University of Florida, Center for Research in Psychophysiology.Google Scholar
  39. Lang, P. J., Greenwald, M. K., Bradley, M. M., & Hamm, A. O. (1993). Looking at pictures: Affective, facial, visceral and behavioral reactions. Psychophysiology, 30, 261–273.CrossRefPubMedGoogle Scholar
  40. Lange, K., Williams, L. M., Young, A. W., Bullmore, E. T., Brammer, M. J., Williams, S. C., et al. (2003). Task instructions modulate neural responses to fearful facial expressions. Biological Psychiatry, 53, 226–232.CrossRefPubMedGoogle Scholar
  41. Lazar, N. A., Luna, B., Sweeney, J. A., & Eddy, W. F. (2002). Combining brains: A survey of methods for statistical pooling of information. NeuroImage, 16, 538–550.CrossRefPubMedGoogle Scholar
  42. Lee, G. P., Loring, D. W., Meader, K. J., & Brooks, B. B. (1990). Hemispheric specialization for emotional expression: A reexamination of results from intracarotid administration of sodium amobarbital. Brain & Cognition, 12, 267–280.CrossRefGoogle Scholar
  43. Markowitsch, H. J. (1998). Differential contribution of right and left amygdala to affective information processing. Behavioural Neurology, 11, 233–244.PubMedGoogle Scholar
  44. Mehrabian, A., & Russell, J. A. (1974). An approach to environmental psychology. Cambridge, MA: MIT Press.Google Scholar
  45. Mesulam, M.-M. (1985). Patterns in behavioral neuroanatomy: Association areas, the limbic system, and hemispheric specialization. In M.-M. Mesulam (Ed.), Principles of behavioral neurology (pp. 1–70). Philadelphia: Davis.Google Scholar
  46. Morris, J. S., Frith, C. D., Perrett, D. I., Rowland, D., Young, A. W., Calder, A. J., & Dolan, R. J. (1996). A differential neural response in the human amygdala to fearful and happy facial expressions. Nature, 383, 812–815.CrossRefPubMedGoogle Scholar
  47. Mourao-Miranda, J., Volchan, E., Moll, J., de Oliveira-Souza, R., Oliveira, L., Bramati, I., et al. (2003). Contributions of stimulus valence and arousal to visual activation during emotional perception. NeuroImage, 20, 1955–1963.CrossRefPubMedGoogle Scholar
  48. O’Doherty, J., Critchley, H., Deichmann, R., & Dolan, R. J. (2003). Dissociating valence of outcome from behavioral control in human orbital and ventral prefrontal cortices. Journal of Neuroscience, 23, 7931–7939.PubMedGoogle Scholar
  49. O’Doherty, J., Kringelbach, M. L., Rolls, E. T., Hornak, J., & Andrews, C. (2001). Abstract reward and punishment representations in the human orbitofrontal cortex. Nature Neuroscience, 4, 95–102.CrossRefPubMedGoogle Scholar
  50. O’Doherty, J., Rolls, E. T., Francis, S., Bowtell, R., McGlone, F., Kobal, G., et al. (2000). Sensory-specific satiety-related olfactory activation of the human orbitofrontal cortex. NeuroReport, 11, 893–897.CrossRefPubMedGoogle Scholar
  51. Oliva, A., Mack, M. L., Shrestha, M., & Peeper, A. (2004, August). Identifying the perceptual dimensions of visual complexity of scenes. Paper presented at the 26th Annual Meeting of the Cognitive Science Society, Chicago.Google Scholar
  52. Paradiso, S., Chemerinski, E., Yazici, K. M., Tartaro, A., & Robinson, R. G. (1999). Frontal lobe syndrome reassessed: Comparison of patients with lateral or medial frontal brain damage. Journal of Neurology, Neurosurgery, & Psychiatry, 67, 664–667.CrossRefGoogle Scholar
  53. Paradiso, S., Johnson, D. L., Andreasen, N. C., O’Leary, D. S., Watkins, G. L., Ponto, L. L., & Hichwa, R. D. (1999). Cerebral blood flow changes associated with attribution of emotional valence to pleasant, unpleasant, and neutral visual stimuli in a PET study of normal subjects. American Journal of Psychiatry, 156, 1618–1629.PubMedGoogle Scholar
  54. Phelps, E. A., O’Connor, K. J., Gatenby, J. C., Gore, J. C., Grillon, C., & Davis, M. (2001). Activation of the left amygdala to a cognitive representation of fear. Nature Neuroscience, 4, 437–441.CrossRefPubMedGoogle Scholar
  55. Phillips, M. L., Young, A. W., Senior, C., Brammer, M., Andrew, C., Calder, A. J., et al. (1997). A specific neural substrate for perceiving facial expressions of disgust. Nature, 389, 495–498.CrossRefPubMedGoogle Scholar
  56. Royet, J.-P., Zald, D., Versace, R., Costes, N., Lavenne, F., Koenig, O., & Gervais, R. (2000). Emotional responses to pleasant and unpleasant olfactory, visual, and auditory stimuli: A positron emission tomography study. Journal of Neuroscience, 20, 7752–7758.PubMedGoogle Scholar
  57. Russell, J. (1980). A circumplex model of affect. Journal of Personality & Social Psychology, 39, 1161–1178.CrossRefGoogle Scholar
  58. Schneider, F., Gur, R. E., Mozley, L. H., Smith, R. J., Mozley, P. D., Censits, D. M., et al. (1995). Mood effects on limbic blood flow correlate with emotional self-rating: A PET study with oxygen-15 labeled water. Psychiatry Research, 61, 265–283.CrossRefPubMedGoogle Scholar
  59. Scott, S. K., Young, A. W., Calder, A. J., Hellawell, D. J., Aggleton, J. P., & Johnson, M. (1997). Impaired auditory recognition of fear and anger following bilateral amygdala lesions. Nature, 385, 254–257.CrossRefPubMedGoogle Scholar
  60. Slotnick, S. D., Moo, L. R., Segal, J. B., & Hart, J., Jr. (2003). Distinct prefrontal cortex activity associated with item memory and source memory for visual shapes. Cognitive Brain Research, 17, 75–82.CrossRefPubMedGoogle Scholar
  61. Small, D. M., Gregory, M. D., Mak, Y. E., Gitelman, D., Mesulam, M.-M., & Parrish, T. (2003). Dissociation of neural representation of intensity and affective valuation in human gustation. Neuron, 39, 701–711.CrossRefPubMedGoogle Scholar
  62. Small, D. M., Zatorre, R. J., Dagher, A., Evans, A. C., & Jones-Gotman, M. (2001). Changes in brain activity related to eating chocolate: From pleasure to aversion. Brain, 124, 1720–1733.CrossRefPubMedGoogle Scholar
  63. Starkstein, S. E., Robinson, R. G., Honig, M. A., Parikh, R. M., Joselyn, J., & Price, T. R. (1989). Mood changes after right-hemisphere lesions. British Journal of Psychiatry, 155, 79–85.CrossRefPubMedGoogle Scholar
  64. Sutton, S. K., Ward, R. T., Larson, C. L., Holden, J. E., Perlman, S. B., & Davidson, R. J. (1997). Asymmetry in prefrontal glucose metabolism during appetitive and aversive emotional states: An FDGPET study. Psychophysiology, 34(Suppl.), S89.CrossRefGoogle Scholar
  65. Tabert, M. H., Borod, J. C., Tang, C. Y., Lange, G., Wei, T. C., Johnson, R., et al. (2001). Differential amygdala activation during emotional decision and recognition memory tasks using unpleasant words: An fMRI study. Neuropsychologia, 39, 556–573.CrossRefPubMedGoogle Scholar
  66. Talairach, J., & Tournoux, P. (1988). Co-planar stereotaxic atlas of the human brain: 3-dimensional proportional system: An approach to cerebral imaging (M. Rayport, Trans.). New York: Thieme.Google Scholar
  67. Taylor, S. F., Liberzon, I., Fig, L. M., Decker, L. R., Minoshima, S., & Koeppe, R. A. (1998). The effect of emotional content on visual recognition memory: A PET activation study. NeuroImage, 8, 188–197.CrossRefPubMedGoogle Scholar
  68. Taylor, S. F., Phan, K. L., Decker, L. R., & Liberzon, I. (2003). Subjective rating of emotionally salient stimuli modulates neural activity. NeuroImage, 18, 650–659.CrossRefPubMedGoogle Scholar
  69. Teasdale, J. D., Howard, R. J., Cox, S. G., Ha, Y., Brammer, M. J., Williams, S. C., & Checkley, S. A. (1999). Functional MRI study of the cognitive generation of affect. American Journal of Psychiatry, 156, 209–215.PubMedGoogle Scholar
  70. Tomarken, A. J., Davidson, R. J., Wheeler, R. E., & Doss, R. C. (1992). Individual differences in anterior brain asymmetry and fundamental dimensions of emotion. Journal of Personality & Social Psychology, 62, 676–687.CrossRefGoogle Scholar
  71. Whalen, P. J., Rauch, S. L., Etcoff, N. L., McInerney, S. C., Lee, M. B., & Jenike, M. A. (1998). Masked presentations of emotional facial expressions modulate amygdala activity without explicit knowledge. Journal of Neuroscience, 18, 411–418.PubMedGoogle Scholar
  72. Whalen, P. J., Shin, L. M., McInerney, S. C., Fischer, H., Wright, C. I., & Rauch, S. L. (2001). A functional MRI study of human amygdala responses to facial expressions of fear versus anger. Emotion, 1, 70–83.CrossRefPubMedGoogle Scholar
  73. Wheeler, R. E., Davidson, R. J., & Tomarken, A. J. (1993). Frontal brain asymmetry and emotional reactivity: A biological substrate of affective style. Psychophysiology, 30, 82–89.CrossRefPubMedGoogle Scholar

Copyright information

© Psychonomic Society, Inc. 2006

Authors and Affiliations

  • Elizabeth A. Kensinger
    • 1
    • 2
  • Daniel L. Schacter
    • 1
    • 2
  1. 1.Department of PsychologyBoston CollegeChestnut Hill
  2. 2.Athinoula A. Martinos Center for Biomedical ImagingCharlestown

Personalised recommendations