Variant BDNF (Val66Met) impact on brain structure and function

Article

Abstract

Neurotrophins, such as brain-derived neurotrophic factor (BDNF), are a unique family of polypeptide growth factors that influence differentiation and survival of neurons in the developing nervous system. In adults, BDNF is important in regulating synaptic plasticity and connectivity in the brain. Recently, a common single-nucleotide polymorphism in the human BDNF gene, resulting in a valine to methionine substitution in the prodomain (Val66Met), has been shown to lead to memory impairment and susceptibility to neuropsychiatric disorders. An understanding of how this naturally occurring polymorphism affects behavior, anatomy, and cognition in adults is an important first step in linking genetic alterations in the neurotrophin system to definable biological outcomes in humans. We review the recent literature linking this BDNF polymorphism to cognitive impairment in the context of in vitro and transgenic animal studies that have established BDNF’s central role in neuronal functioning in the adult brain.

References

  1. Baquet, Z. C., Gorski, J. A., & Jones, K. R. (2004). Early striatal dendrite deficits followed by neuron loss with advanced age in the absence of anterograde cortical brain-derived neurotrophic factor. Journal of Neuroscience, 24, 4250–4258.CrossRefPubMedGoogle Scholar
  2. Beck, G., Munno, D. W., Levy, Z., Dissel, H. M., Van-Minnen, J., Syed, N. I., & Fainzilber, M. (2004). Neurotrophic activities of trk receptors conserved over 600 million years of evolution. Journal of Neurobiology, 60, 12–20.CrossRefPubMedGoogle Scholar
  3. Chao, M. V. (2000). Trophic factors: An evolutionary cul-de-sac or door into higher neuronal function? Journal of Neuroscience Research, 59, 353–355.CrossRefPubMedGoogle Scholar
  4. Chao, M. V. (2003). Neurotrophins and their receptors: A convergence point for many signalling pathways. Nature Reviews Neuroscience, 4, 299–309.CrossRefPubMedGoogle Scholar
  5. Chen, Z. Y., Ieraci, A., Teng, H., Dall, H., Meng, C. X., Herrera, D. G., et al. (2005). Sortilin controls intracellular sorting of brain-derived neurotrophic factor to the regulated secretory pathway. Journal of Neuroscience, 25, 6156–6166.CrossRefPubMedGoogle Scholar
  6. Chen, Z. Y., Patel, P. D., Sant, G., Meng, C. X., Teng, K. K., Hempstead, B. L., & Lee, F. S. (2004). Variant brain-derived neurotrophic factor (BDNF) (Met66) alters the intracellular trafficking and activitydependent secretion of wild-type BDNF in neurosecretory cells and cortical neurons. Journal of Neuroscience, 24, 4401–4411.CrossRefPubMedGoogle Scholar
  7. Chourbaji, S., Hellweg, R., Brandis, D., Zörner, B., Zacher, C., Lang, U. E., et al. (2004). Mice with reduced brain-derived neurotrophic factor expression show decreased choline acetyltransferase activity, but regular brain monoamine levels and unaltered emotional behavior. Molecular Brain Research, 121, 28–36.CrossRefPubMedGoogle Scholar
  8. Desai, N., Rutherford, L., & Turrigiano, G. (1999). BDNF regulates the intrinsic excitability of cortical neurons. Learning & Memory, 6, 284–291.Google Scholar
  9. Egan, M. F., Kojima, M., Callicott, J. H., Goldberg, T. E., Kolachana, B. S., Bertolino, A., et al. (2003). The BDNF val66met polymorphism affects activity-dependent secretion of BDNF and human memory and hippocampal function. Cell, 112, 257–269.CrossRefPubMedGoogle Scholar
  10. Gabrieli, J. D., Brewer, J. B., & Poldrack, R. A. (1998). Images of medial temporal lobe functions in human learning and memory. Neurobiology of Learning & Memory, 70, 275–283.CrossRefGoogle Scholar
  11. Gorski, J. A., Balogh, S. A., Wehner, J. M., & Jones, K. R. (2003). Learning deficits in forebrain-restricted brain-derived neurotrophic factor mutant mice. Neuroscience, 121, 341–354.CrossRefPubMedGoogle Scholar
  12. Gorski, J. A., Zeiler, S. R., Tamowski, S., & Jones, K. R. (2003). Brain-derived neurotrophic factor is required for the maintenance of cortical dendrites. Journal of Neuroscience, 23, 6856–6865.PubMedGoogle Scholar
  13. Hariri, A. R., Goldberg, T. E., Mattay, V. S., Kolachana, B. S., Callicott, J. H., Egan, M. F., & Weinberger, D. R. (2003). Brainderived neurotrophic factor val66met polymorphism affects human memory-related hippocampal activity and predicts memory performance. Journal of Neuroscience, 23, 6690–6694.PubMedGoogle Scholar
  14. Huang, E., & Reichardt, L. (2001). Neurotrophins: Roles in neuronal development and function. Annual Review of Neuroscience, 24, 677–736.CrossRefPubMedGoogle Scholar
  15. Kang, H., & Schuman, E. M. (1995). Long-lasting neurotrophin-induced enhancement of synaptic transmission in the adult hippocampus. Science, 267, 1658–1662.CrossRefPubMedGoogle Scholar
  16. Korte, M., Carroll, P., Wolf, E., Brem, G., Thoenen, H., & Bonhoeffer, T. (1995). Hippocampal long-term potentiation is impaired in mice lacking brain-derived neurotrophic factor. Proceedings of the National Academy of Sciences, 92, 8856–8860.CrossRefGoogle Scholar
  17. Lee, R., Kermani, P., Teng, K. K., & Hempstead, B. L. (2001). Regulation of cell survival by secreted proneurotrophins. Science, 294, 1945–1948.CrossRefPubMedGoogle Scholar
  18. Levine, E. S., Dreyfus, C. F., Black, I. B., & Plummer, M. R. (1995). Brain-derived neurotrophic factor rapidly enhances synaptic transmission in hippocampal neurons via postsynaptic tyrosine kinase receptors. Proceedings of the National Academy of Sciences, 92, 8074–8077.CrossRefGoogle Scholar
  19. Linnarsson, S., Björklund, A., & Ernfors, P. (1997). Learning deficit in BDNF mutant mice. European Journal of Neuroscience, 9, 2581–2587.CrossRefPubMedGoogle Scholar
  20. Liu, I. Y., Lyons, W. E., Mamounas, L. A., & Thompson, R. F. (2004). Brain-derived neurotrophic factor plays a critical role in contextual fear conditioning. Journal of Neuroscience, 24, 7958–7963.CrossRefPubMedGoogle Scholar
  21. Lohof, A. M., Ip, N., & Poo, M. M. (1993). Potentiation of developing neuromuscular synapses by the neurotrophins NT-3 and BDNF. Nature, 363, 350–353.CrossRefPubMedGoogle Scholar
  22. Lu, B., Pang, P. T., & Woo, N. H. (2005). The yin and yang of neurotrophin action. Nature Reviews Neuroscience, 6, 603–614.CrossRefPubMedGoogle Scholar
  23. MacQueen, G. M., Ramakrishnan, K., Croll, S. D., Siuciak, J. A., Yu, G., Young, L. T., & Fahnestock, M. (2001). Performance of heterozygous brain-derived neurotrophic factor knockout mice on behavioral analogues of anxiety, nociception, and depression. Behavioral Neuroscience, 15, 1145–1153.CrossRefGoogle Scholar
  24. McAllister, A., Lo, D., & Katz, L. (1995). Neurotrophins regulate dendritic growth in developing visual cortex. Neuron, 5, 791–803.CrossRefGoogle Scholar
  25. Minichiello, L., Korte, M., Wolfer, D., Kuhn, R., Unsicker, K., Cestari, V., Xeaet al. (1999). Essential role for TrkB receptors in hippocampus-mediated learning. Neuron, 24, 401–414.CrossRefPubMedGoogle Scholar
  26. Momose, Y., Murata, M., Kobayashi, K., Tachikawa, M., Nakabayashi, Y., Kanazawa, I., & Toda, T. (2002). Association studies of multiple candidate genes for Parkinson’s disease using single nucleotide polymorphisms. Annals of Neurology, 51, 133–136.CrossRefPubMedGoogle Scholar
  27. Monteggia, L. M., Barrot, M., Powell, C. M., Berton, O., Galanis, V., Gemelli, T., Xeaet al. (2004). Essential role of brain-derived neurotrophic factor in adult hippocampal function. Proceedings of the National Academy of Sciences, 01, 10827–10832.CrossRefGoogle Scholar
  28. Montkowski, A., & Holsboer, F. (1997). Intact spatial learning and memory in transgenic mice with reduced BDNF. NeuroReport, 8, 779–782.CrossRefPubMedGoogle Scholar
  29. Neves-Pereira, M., Mundo, E., Muglia, P., King, N., Macciardi, F., & Kennedy, J. L. (2002). The brain-derived neurotrophic factor gene confers susceptibility to bipolar disorder: Evidence from a family-based association study. American Journal of Human Genetics, 71, 651–655.CrossRefPubMedGoogle Scholar
  30. Nguyen, P. V., Abel, T., Kandel, E. R., & Bourtchouladze, R. (2000). Strain-dependent differences in LTP and hippocampusdependent memory in inbred mice. Learning & Memory, 7, 170–179.CrossRefGoogle Scholar
  31. Patterson, S. L., Abel, T., Deuel, T. A., Martin, K. C., Rose, J. C., & Kandel, E. R. (1996). Recombinant BDNF rescues deficits in basal synaptic transmission and hippocampal LTP in BDNF knockout mice. Neuron, 6, 1137–1145.CrossRefGoogle Scholar
  32. Pezawas, L., Verchinski, B. A., Mattay, V. S., Callicott, J. H., Kolachana, B. S., Straub, R. E., Xeaet al. (2004). The brain-derived neurotrophic factor val66met polymorphism and variation in human cortical morphology. Journal of Neuroscience, 24, 10099–10102.CrossRefPubMedGoogle Scholar
  33. Poo, M. M. (2001). Neurotrophins as synaptic modulators. Nature Reviews Neuroscience, 2, 24–31.CrossRefPubMedGoogle Scholar
  34. Ribases, M., Gratacos, M., Armengol, L., de Cid, R., Badia, A., Jimenez, L., Xeaet al. (2003). Met66 in the brain-derived neurotrophic factor (BDNF) precursor is associated with anorexia nervosa restrictive type. Molecular Psychiatry, 8, 745–751.CrossRefPubMedGoogle Scholar
  35. Ribases, M., Gratacos, M., Fernandez-Aranda, F., Bellodi, L., Boni, C., Anderluh, M., Xeaet al. (2004). Association of BDNF with anorexia, bulimia and age of onset of weight loss in six European populations. Human Molecular Genetics, 3, 1205–1212.CrossRefGoogle Scholar
  36. Rybakowski, J. K., Borkowska, A., Skibinska, M., & Hauser, J. (2006). Illness-specific association of val66met BDNF polymorphism with performance on Wisconsin Card Sorting Test in bipolar mood disorder. Molecular Psychiatry, 1, 122–124.CrossRefGoogle Scholar
  37. Schacter, D. L., & Wagner, A. D. (1999). Perspectives: Neuroscience. Remembrance of things past. Science, 285, 1503–1504.CrossRefPubMedGoogle Scholar
  38. Sen, S., Nesse, R. M., Stoltenberg, S. F., Li, S., Gleiberman, L., Chakravarti, A., Xeaet al. (2003). A BDNF coding variant is associated with the NEO personality inventory domain neuroticism, a risk factor for depression. Neuropsychopharmacology, 28, 397–401.CrossRefPubMedGoogle Scholar
  39. Shimizu, E., Hashimoto, K., & Iyo, M. (2004). Ethnic difference of the BDNF 196G/A (val66met) polymorphism frequencies: The possibility to explain ethnic mental traits. American Journal of Medical Genetics: Part B, 26, 122–123.Google Scholar
  40. Sklar, P., Gabriel, S. B., McInnis, M. G., Bennett, P., Lim, Y. M., Tsan, G., Xeaet al. (2002). Family-based association study of 76 candidate genes in bipolar disorder: BDNF is a potential risk locus. Molecular Psychiatry, 7, 579–593.CrossRefPubMedGoogle Scholar
  41. Snider, W. (1994). Functions of the neurotrophins during nervous system development: What the knockouts are teaching us. Cell, 77, 627–638.CrossRefPubMedGoogle Scholar
  42. Suter, U., Heymach, J. V., Jr., & Shooter, E. M. (1991). Two conserved domains in the NGF propeptide are necessary and sufficient for the biosynthesis of correctly processed and biologically active NGF. EMBO Journal, 0, 2395–2400.Google Scholar
  43. Szeszko, P. R., Lipsky, R., Mentschel, C., Robinson, D., Gunduz-Bruce, H., Sevy, S., Xeaet al. (2005). Brain-derived neurotrophic factor val66met polymorphism and volume of the hippocampal formation. Molecular Psychiatry, 0, 631–636.CrossRefGoogle Scholar
  44. Teng, H. K., Teng, K. K., Lee, R., Wright, S., Tevar, S., Almeida, R. D., et al. (2005). ProBDNF induces neuronal apoptosis via activation of a receptor complex of p75NTR and sortilin. Journal of Neuroscience, 25, 5455–5463.CrossRefPubMedGoogle Scholar
  45. Thoenen, H., & Sendtner, M. (2002). Neurotrophins: From enthusiastic expectations through sobering experiences to rational therapeutic approaches. Nature Neuroscience, 5^(Suppl.), 1046–1050.CrossRefGoogle Scholar
  46. Ventriglia, M., Bocchio Chiavetto, L., Benussi, L., Binetti, G., Zanetti, O., Riva, M. A., & Gennarelli, M. (2002). Association between the BDNF 196 A/G polymorphism and sporadic Alzheimer’s disease. Molecular Psychiatry, 7, 136–137.CrossRefPubMedGoogle Scholar
  47. Vigers, A. J., Baquet, Z. C., & Jones, K. R. (2000). Expression of neurotrophin-3 in the mouse forebrain: Insights from a targeted LacZ reporter. Journal of Comparative Neurology, 416, 398–415.CrossRefPubMedGoogle Scholar
  48. Vyssotski, A. L., Dell’Omo, G., Poletaeva, I. I., Vyssotsk, D. L., Minichiello, L., Klein, R., Xeaet al. (2002). Long-term monitoring of hippocampus-dependent behavior in naturalistic settings: Mutant mice lacking neurotrophin receptor TrkB in the forebrain show spatial learning but impaired behavioral flexibility. Hippocampus, 2, 27–38.CrossRefGoogle Scholar
  49. Xu, B., Gottschalk, W., Chow, A., Wilson, R., Schnell, E., Zang, K., Xeaet al. (2000). The fold of brain-derived neurotrophic factor receptors in the mature hippocampus: Modulation of long-term potentiation through a presynaptic mechanism involving TrkB. Journal of Neuroscience, 20, 6888–6897.PubMedGoogle Scholar
  50. Yan, Q., Radeke, M. J., Matheson, C. R., Talvenheimo, J., Welcher, A. A., & Feinstein, S. C. (1997). Immunocytochemical localization of TrkB in the central nervous system of the adult rat. Journal of Comparative Neurology, 378, 135–157.CrossRefPubMedGoogle Scholar
  51. Zörner, B., Wolfer, D. P., Brandis, D., Kretz, O., Zacher, C., Madani, R., Xeaet al. (2003). Forebrain-specific trkB-receptor knockout mice: Behaviorally more hyperactive than “depressive.” Biological Psychiatry, 54, 972–982.CrossRefPubMedGoogle Scholar

Copyright information

© Psychonomic Society, Inc. 2006

Authors and Affiliations

  1. 1.Department of PsychiatryWeill Medical College of Cornell UniversityNew York

Personalised recommendations