Affective personality differences in neural processing efficiency confirmed using fMRI

  • Jeremy R. Gray
  • Gregory C. Burgess
  • Alexandre Schaefer
  • Tal Yarkoni
  • Randy J. Larsen
  • Todd S. Braver
Article

Abstract

To test for a relation between individual differences in personality and neural-processing efficiency, we used functional magnetic resonance imaging (fMRI) to assess brain activity within regions associated with cognitive control during a demanding working memory task. Fifty-three participants completed both the self-report behavioral inhibition sensitivity (BIS) and behavioral approach sensitivity (BAS) personality scales and a standard measure of fluid intelligence (Raven’s Advanced Progressive Matrices). They were then scanned as they performed a three-back working memory task. A mixed blocked/ event-related fMRI design enabled us to identify both sustained and transient neural activity. Higher BAS was negatively related to event-related activity in the dorsal anterior cingulate, the lateral prefrontal cortex, and parietal areas in regions of interest identified in previous work. These relationships were not explained by differences in either behavioral performance or fluid intelligence, consistent with greater neural efficiency. The results reveal the high specificity of the relationships among personality, cognition, and brain activity. The data confirm that affective dimensions of personality are independent of intelligence, yet also suggest that they might be interrelated in subtle ways, because they modulate activity in overlapping brain regions that appear to be critical for task performance.

References

  1. Aalto, S., Bruck, A., Laine, M., Nagren, K., & Rinne, J. O. (2005). Frontal and temporal dopamine release during working memory and attention tasks in healthy humans: A positron emission tomography study using the high-affinity dopamine d2 receptor ligand [11c]flb 457. Journal of Neuroscience, 25, 2471–2477.CrossRefPubMedGoogle Scholar
  2. Ashby, F. G., Isen, A. M., & Turken, A. U. (1999). A neuropsychological theory of positive affect and its influence on cognition. Psychological Review, 106, 529–550.CrossRefPubMedGoogle Scholar
  3. Bates, T. C., & Rock, A. (2004). Personality and information processing speed: Independent influences on intelligent performance. Intelligence, 32, 33–46.CrossRefGoogle Scholar
  4. Braver, T. S., & Cohen, J. D. (2000). On the control of control: The role of dopamine in regulating prefrontal function and working memory. In S. Monsell & J. Driver (Eds.), Attention and performance XVIII: Control of cognitive processes (pp. 713–738). Cambridge, MA: MIT Press.Google Scholar
  5. Braver, T. S., Cohen, J. D., Nystrom, L. E., Jonides, J., Smith, E. E., & Noll, D. C. (1997). A parametric study of prefrontal cortex involvement in human working memory. NeuroImage, 5, 49–62.CrossRefPubMedGoogle Scholar
  6. Braver, T. S., Reynolds, J. R., & Donaldson, D. I. (2003). Neural mechanisms of transient and sustained cognitive control during task switching. Neuron, 39, 713–726.CrossRefPubMedGoogle Scholar
  7. Bullock, W. A., & Gilliland, K. (1993). Eysenck’s arousal theory of introversion-extraversion: A converging measures investigation. Journal of Personality & Social Psychology, 64, 113–123.CrossRefGoogle Scholar
  8. Bunge, S. A., Klingberg, T., Jacobsen, R. B., & Gabrieli, J. D. E. (2000). A resource model of the neural basis of executive working memory. Proceedings of the National Academy of Sciences, 97, 3573–3578.CrossRefGoogle Scholar
  9. Bush, G., Luu, P., & Posner, M. I. (2000). Cognitive and emotional influences in anterior cingulate cortex. Trends in Cognitive Sciences, 4, 215–222.CrossRefPubMedGoogle Scholar
  10. Bush, G., Vogt, B. A., Holmes, J., Dale, A. M., Greve, D., & Jenike, M. A. (2002). Dorsal anterior cingulate cortex: A role in rewardbased decision making. Proceedings of the National Academy of Sciences, 99, 507–512.CrossRefGoogle Scholar
  11. Canli, T., Sivers, H., Whitfield, S. L., Gotlib, I. H., & Gabrieli, J. D. E. (2002). Amygdala response to happy faces as a function of extraversion. Science, 296, 2191.CrossRefPubMedGoogle Scholar
  12. Carver, C. S., Sutton, S. K., & Scheier, M. F. (2000). Action, emotion, and personality: Emerging conceptual integration. Personality & Social Psychology Bulletin, 26, 741–751.CrossRefGoogle Scholar
  13. Carver, C. S., & White, T. (1994). Behavioral inhibition, behavioral activation, and affective responses to impending reward and punishment: The bis/bas scales. Journal of Personality & Social Psychology, 67, 319–333.CrossRefGoogle Scholar
  14. Cohen, J., MacWhinney, B., Flatt, M., & Provost, J. (1993). PsyScope: An interactive graphic system for designing and controlling experiments in the psychology laboratory using Macintosh computers. Behavior Research Methods, Instruments, & Computers, 25, 257–271.Google Scholar
  15. Costa, P. T., & McCrae, R. R. (1980). Influence of extraversion and neuroticism on subjective well-being: Happy and unhappy people. Journal of Personality & Social Psychology, 38, 668–678.CrossRefGoogle Scholar
  16. Critchley, H. D., Mathias, C. J., & Dolan, R. J. (2001). Neural activity in the human brain relating to uncertainty and arousal during anticipation. Neuron, 29, 537–545.CrossRefPubMedGoogle Scholar
  17. Deary, I. J. (2000). Looking down on human intelligence. New York: Oxford University Press.CrossRefGoogle Scholar
  18. Deary, I. J., Simonotto, E., Meyer, M., Marshall, A., Marshall, I., Goddard, N., & Wardlaw, J. M. (2004). The functional anatomy of inspection time: An event-related f MRI study. Neuro Image, 22, 1466–1479.PubMedGoogle Scholar
  19. Depue, R. A., & Collins, P. F. (1999). Neurobiology of the structure of personality: Dopamine, facilitation of incentive motivation, and extraversion. Behavioral & Brain Sciences, 22, 491–569.Google Scholar
  20. Devinsky, O., Morrell, M. J., & Vogt, B. (1995). Contributions of anterior cingulate cortex to behavior. Brain, 118, 279–306.CrossRefPubMedGoogle Scholar
  21. DeYoung, C. G., Peterson, J. B., & Higgins, D. M. (in press). Sources of openness/intellect: Cognitive and neuropsychological correlates of the fifth factor of personality. Journal of Personality.Google Scholar
  22. Donaldson, D. I., Petersen, S. E., Ollinger, J. M., & Buckner, R. L. (2001). Dissociating item and state components of recognition memory using fMRI. Neuro Image, 13, 129–142.PubMedGoogle Scholar
  23. Ebmeier, K. P., Deary, I. J., O’Carroll, R. E., Prentice, N., Moffoot, A. P. R., & Goodwin, G. M. (1994). Personality associations with the uptake of the cerebral blood flow marker 99mtc-exametazime estimated with single photon emission tomography. Personality & Individual Differences, 17, 587–595.CrossRefGoogle Scholar
  24. Eysenck, H. J. (1967). The biological basis of personality. Springfield, IL: Thomas.Google Scholar
  25. Eysenck, H. J., & Eysenck, S. B. G. (1991). Manual of the Eysenck personality scales. London: Hodder & Stoughton.Google Scholar
  26. Eysenck, M. W., & Calvo, M. G. (1992). Anxiety and performance: The processing efficiency theory. Cognition & Emotion, 6, 409–434.CrossRefGoogle Scholar
  27. Eysenck, S. B. G., Eysenck, H. J., & Barrett, P. (1985). A revised version of the psychoticism scale. Personality & Individual Differences, 6, 21–29.CrossRefGoogle Scholar
  28. Fairclough, S. H., & Houston, K. (2004). A metabolic measure of mental effort. Biological Psychology, 66, 177–190.CrossRefPubMedGoogle Scholar
  29. Fink, A., Schrausser, D. G., & Neubauer, A. C. (2004). The moderating influence of extraversion on the relationship between IQ and cortical activity. Personality & Individual Differences, 33, 311–326.CrossRefGoogle Scholar
  30. Gale, A. (1983). Electroencephalographic studies of extraversion-introversion: A case study in the psychophysiology of individual differences. Personality & Individual Differences, 4, 371–380.CrossRefGoogle Scholar
  31. Gale, A. (1986). Extraversion-introversion and spontaneous rhythms of the brain: Retrospect and prospect. In J. Strelau, F. Farley, & A. Gale (Eds.), The biological basis of personality and behavior: Psychophysiology, performance, and applications (Vol. 2, pp. 25–42). Washington, DC: Hemisphere.Google Scholar
  32. Gray, J. A. (1994). Personality dimensions and emotion systems. In P. Ekman & R. J. Davidson (Eds.), The nature of emotion (pp. 329–331). New York: Oxford University Press.Google Scholar
  33. Gray, J. R., & Braver, T. S. (2002). Personality predicts working-memory-related activation in the caudal anterior cingulate cortex. Cognitive, Affective, & Behavioral Neuroscience, 2, 64–75.CrossRefGoogle Scholar
  34. Gray, J. R., Braver, T. S., & Raichle, M. E. (2002). Integration of emotion and cognition in the lateral prefrontal cortex. Proceedings of the National Academy of Sciences, 99, 4115–4120.CrossRefGoogle Scholar
  35. Gray, J. R., Chabris, C. F., & Braver, T. S. (2003). Neural mechanisms of general fluid intelligence. Nature Neuroscience, 6, 316–322.CrossRefPubMedGoogle Scholar
  36. Gray, J. R., & Thompson, P. M. (2004). Neurobiology of intelligence: Science and ethics. Nature Reviews Neuroscience, 5, 471–482.CrossRefPubMedGoogle Scholar
  37. Green, R. (1984). Preferred stimulation levels in introverts and extraverts: Effects on arousal and performance. Journal of Personality & Social Psychology, 46, 1303–1312.CrossRefGoogle Scholar
  38. Haier, R. J., Siegel, B., Tang, C., Abel, L., & Buchsbaum, M. S. (1992). Intelligence and changes in regional cerebral glucose metabolic-rate following learning. Intelligence, 16, 415–426.CrossRefGoogle Scholar
  39. Haier, R. J., White, N. S., & Alkire, M. T. (2003). Individual differences in general intelligence correlate with brain function during nonreasoning tasks. Intelligence, 31, 429–441.CrossRefGoogle Scholar
  40. Heffernan, T. M., & Ling, J. (2001). The impact of Eysenck’s extraversion-introversion personality dimension on prospective memory. Scandinavian Journal of Psychology, 42, 321–325.CrossRefPubMedGoogle Scholar
  41. Hockey, G. R. J. (1997). Compensatory control in the regulation of human performance under stress and high workload: A cognitive-energetical framework. Biological Psychology, 45, 73–93.CrossRefPubMedGoogle Scholar
  42. Humphreys, M. S., & Revelle, W. (1984). Personality, motivation, and performance: A theory of the relationship between individual differences and information processing. Psychological Review, 91, 153–184.CrossRefPubMedGoogle Scholar
  43. Kumari, V., Ffytche, D. H., Williams, S. C., & Gray, J. A. (2004). Personality predicts brain responses to cognitive demands. Journal of Neuroscience, 24, 10636–10641.CrossRefPubMedGoogle Scholar
  44. Larsen, R. J., & Ketelaar, E. (1991). Personality and susceptibility to positive and negative emotional states. Journal of Personality & Social Psychology, 61, 132–140.CrossRefGoogle Scholar
  45. Lieberman, M. D. (2000). Introversion and working memory: Central executive differences. Personality & Individual Differences, 28, 479–486.CrossRefGoogle Scholar
  46. Lieberman, M. D., & Rosenthal, R. (2001). Why introverts can’t always tell who likes them: Multitasking and nonverbal decoding. Journal of Personality & Social Psychology, 80, 294–310.CrossRefGoogle Scholar
  47. MacDonald, A. W., Cohen, J. D., Stenger, V. A., & Carter, C. S. (2000). Dissociating the role of the dorsolateral prefrontal cortex and anterior cingulate cortex in cognitive control. Science, 288, 1835–1838.CrossRefPubMedGoogle Scholar
  48. Meng, X., Rosenthal, R., & Rubin, D. B. (1992). Comparing correlated correlation coefficients. Psychological Bulletin, 111, 172–175.CrossRefGoogle Scholar
  49. Neubauer, A. C., Fink, A., & Schrausser, D. G. (2002). Intelligence and neural efficiency: The influence of task content and sex on the brain-IQ relationship. Intelligence, 30, 515–536.Google Scholar
  50. Paus, T. (2001). Primate anterior cingulate cortex: Where motor control, drive and cognition interface. Nature Reviews Neuroscience, 2, 417–424.CrossRefPubMedGoogle Scholar
  51. Paus, T., Koski, L., Caramanos, Z., & Westbury, C. (1998). Regional differences in the effects of task difficulty and motor output on blood flow response in the human anterior cingulate cortex: A review of 107 pet activation studies. Neuro Report, 9, R37-R47.Google Scholar
  52. Pochon, J. B., Levy, R., Fossati, P., Lehericy, S., Poline, J. B., Pillon, B., Le Bihan, D., & Dubois, B. (2002). The neural system that bridges reward and cognition in humans: An fMRI study. Proceedings of the National Academy of Sciences, 99, 5669–5674.CrossRefGoogle Scholar
  53. Raven, J., Raven, J. C., & Court, J. H. (1998). Manual for Raven’s progressive matrices and vocabulary scales. Oxford: Oxford Psychologists Press.Google Scholar
  54. Rusting, C. L., & Larsen, R. J. (1999). Clarifying Gray’s theory of personality: A response to Pickering, Corr, and Gray. Personality & Individual Differences, 26, 367–372.Google Scholar
  55. Rypma, B., & D’Esposito, M. (1999). The roles of prefrontal brain regions in components of working memory: Effects of memory load and individual differences. Proceedings of the National Academy of Sciences, 96, 6558–6563.CrossRefGoogle Scholar
  56. Simpson, J. R., Drevets, W. C., Snyder, A. Z., Gusnard, D. A., & Raichle, M. E. (2001). Emotion-induced changes in human medial prefrontal cortex: II. During anticipatory anxiety. Proceedings of the National Academy of Sciences, 98, 688–693.CrossRefGoogle Scholar
  57. Stelmack, R. M. (1990). Biological basis of extraversion: Psychophysiological evidence. Journal of Personality, 58, 293–311.CrossRefPubMedGoogle Scholar
  58. Sutton, S. K., & Davidson, R. J. (1997). Prefrontal brain asymmetry: A biological substrate of the behavioral approach and inhibition systems. Psychological Science, 8, 204–210.CrossRefGoogle Scholar
  59. Talairach, J., & Tournoux, P. (1988). Co-planar stereotaxic atlas of the human brain. New York: Thieme.Google Scholar
  60. Wilkinson, D., & Halligan, P. (2004). The relevance of behavioural measures for functional-imaging studies of cognition. Nature Reviews Neuroscience, 5, 67–73.CrossRefPubMedGoogle Scholar
  61. Yerkes, R. M., & Dodson, J. D. (1908). The relation of strength of stimulus to the rapidity of habit formation. Journal of Comparative Neurology & Psychology, 18, 459–482.CrossRefGoogle Scholar
  62. Zald, D. H., Mattson, D. L., & Pardo, J. V. (2002). Brain activity in ventromedial prefrontal cortex correlates with individual differences in negative affect. Proceedings of the National Academy of Sciences, 99, 2450–2454.CrossRefGoogle Scholar
  63. Zelenski, J. M., & Larsen, R. J. (1999). Susceptibility to affect: A comparison of three personality taxonomies. Journal of Personality, 67, 761–791.CrossRefPubMedGoogle Scholar

Copyright information

© Psychonomic Society, Inc. 2005

Authors and Affiliations

  • Jeremy R. Gray
    • 1
  • Gregory C. Burgess
    • 2
  • Alexandre Schaefer
    • 1
  • Tal Yarkoni
    • 2
  • Randy J. Larsen
    • 2
  • Todd S. Braver
    • 2
  1. 1.Psychology DepartmentYale UniversityNew Haven
  2. 2.Washington UniversitySt. Louis

Personalised recommendations