Advertisement

Cognitive, Affective, & Behavioral Neuroscience

, Volume 4, Issue 4, pp 528–539 | Cite as

The effects of prefrontal lesions on working memory performance and theory

  • Clayton E. CurtisEmail author
  • Mark D’esposito
Article

Abstract

The effects of experimental lesions of the monkey prefrontal cortex have played a predominant role in current conceptualizations of the functional organization of the lateral prefrontal cortex, especially with regard to working memory. The loss or sparing of certain performance abilities has been shown to be attributable to differences in the specific requirements of behavioral testing (e.g., spatial vs. nonspatial memoranda) along with differences in the specific locations of applied ablations (e.g., dorsal vs. ventral prefrontal cortex). Such findings, which have accumulated now for over a century, have led to widespread acceptance that the dorsolateral and ventrolateral aspects of the prefrontal cortex may perform different, specialized roles in higher order cognition. Nonetheless, it remains unclear and controversial how the lateral prefrontal cortex is functionally organized. Two main views propose different types of functional specialization of the dorsal and ventral prefrontal cortex. The first contends that the lateral prefrontal cortex is segregated according to the processing of spatial and nonspatial domains of information. The second contends that domain specialization is not the key to the organization of the prefrontal cortex, but that instead, the dorsal and ventral prefrontal cortices perform qualitatively different operations. This report critically reviews all relevant monkey lesion studies that have served as the foundation for current theories regarding the functional organization of the prefrontal cortex. Our goals are to evaluate how well the existing lesion data support each theory and to enumerate caveats that must be considered when interpreting the relevant literature.

Keywords

Prefrontal Cortex Work Memory Performance Lateral Prefrontal Cortex Frontal Lesion Inferior Temporal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Bachevalier, J., & Mishkin, M. (1986). Visual recognition impairment follows ventromedial but not dorsolateral prefrontal lesions in monkeys. Behavioral & Brain Research, 20, 249–261.CrossRefGoogle Scholar
  2. Bauer, R. H., & Fuster, J. M. (1976). Delayed-matching and delayedresponse deficit from cooling dorsolateral prefrontal cortex in monkeys. Journal of Comparative & Physiological Psychology, 90, 293–302.CrossRefGoogle Scholar
  3. Bianchi, L. (1922). The mechanism of the brain and the function of the frontal lobes. Edinburgh: E. & S. Livingstone.Google Scholar
  4. Blum, R. A. (1952). Effects of subtotal lesions of frontal granular cortex on delay reaction in monkeys. Archives of Neurology & Psychiatry, 67, 375–386.Google Scholar
  5. Bussey, T. J., Wise, S. P., & Murray, E. A. (2001). The role of ventral and orbital prefrontal cortex in conditional visuomotor learning and strategy use in rhesus monkeys (Macaca mulatta). Behavioral Neuroscience, 115, 971–982.CrossRefPubMedGoogle Scholar
  6. Butters, N., & Pandya, D. (1969, September 19). Retention of delayedalternation: Effect of selective lesions of sulcus principalis. Science, 165, 1271–1273.CrossRefPubMedGoogle Scholar
  7. Butters, N., Pandya, D., Stein, D., & Rosen, J. (1972). A search for the spatial engram within the frontal lobes of monkeys. Acta Neurobiologiae Experimentalis, 32, 305–329.PubMedGoogle Scholar
  8. Curtis, C. E., & D’Esposito, M. (2003). Persistent activity in the prefrontal cortex during working memory. Trends in Cognitive Sciences, 7, 415–423.CrossRefPubMedGoogle Scholar
  9. Curtis, C. E., Zald, D. H., Lee, J. T., & Pardo, J. V. (2000). Object and spatial alternation tasks with minimal delays activate the right anterior hippocampus proper in humans. NeuroReport, 11, 2203–2207.CrossRefPubMedGoogle Scholar
  10. D’Esposito, M., Postle, B. R., & Rypma, B. (2000). Prefrontal cortical contributions to working memory: Evidence from event-related fMRI studies. Experimental Brain Research, 133, 3–11.CrossRefGoogle Scholar
  11. Eacott, M. J., & Gaffan, D. (1992). Inferotemporal-frontal disconnection: The uncinate fascicle and visual associative learning in monkeys. European Journal of Neuroscience, 4, 1320–1332.CrossRefPubMedGoogle Scholar
  12. Ferrier, D. (1886). The functions of the brain (2nd. ed.). London: Smith, Elder, & Co.Google Scholar
  13. Franz, S. I. (1907). On the functions of the cerebrum: The frontal lobes. New York: Science Press.Google Scholar
  14. Funahashi, S. (2001). Neuronal mechanisms of executive control by the prefrontal cortex. Neuroscience Research, 39, 147–165.CrossRefPubMedGoogle Scholar
  15. Funahashi, S., Bruce, C. J., & Goldman-Rakic, P. S. (1989). Mnemonic coding of visual space in the monkey’s dorsolateral prefrontal cortex. Journal of Neurophysiology, 61, 331–349.PubMedGoogle Scholar
  16. Funahashi, S., Bruce, C. J., & Goldman-Rakic, P. S. (1990). Visuospatial coding in primate prefrontal neurons revealed by oculomotor paradigms. Journal of Neurophysiology, 63, 814–831.PubMedGoogle Scholar
  17. Funahashi, S., Bruce, C. J., & Goldman-Rakic, P. S. (1991). Neuronal activity related to saccadic eye movements in the monkey’s dorsolateral prefrontal cortex. Journal of Neurophysiology, 65, 1464–1483.PubMedGoogle Scholar
  18. Funahashi, S., Bruce, C. J., & Goldman-Rakic, P. S. (1993). Dorsolateral prefrontal lesions and oculomotor delayed-response performance: Evidence for mnemonic “scotomas.” Journal of Neuroscience, 13, 1479–1497.PubMedGoogle Scholar
  19. Fuster, J. M. (2001). The prefrontal cortex—an update: Time is of the essence. Neuron, 30, 319–333.CrossRefPubMedGoogle Scholar
  20. Fuster, J. M., & Alexander, G. E. (1970). Delayed response deficit by cryogenic depression of frontal cortex. Brain Research, 20, 85–90.CrossRefPubMedGoogle Scholar
  21. Fuster, J. M., & Bauer, R. H. (1974). Visual short-term memory deficit from hypothermia of frontal cortex. Brain Research, 81, 393–400.CrossRefPubMedGoogle Scholar
  22. Fuster, J. M., Bauer, R. H., & Jervey, J. P. (1982). Cellular discharge in the dorsolateral prefrontal cortex of the monkey in cognitive tasks. Experimental Neurology, 77, 679–694.CrossRefPubMedGoogle Scholar
  23. Gaffan, D., & Harrison, S. (1988). Inferotemporal-frontal disconnection and fornix transection in visuomotor conditional learning by monkeys. Behavioral & Brain Research, 31, 149–163.CrossRefGoogle Scholar
  24. Goldman, P. S., & Rosvold, H. E. (1970). Localization of function within the dorsolateral prefrontal cortex of the rhesus monkey. Experimental Neurology, 27, 291–304.CrossRefPubMedGoogle Scholar
  25. Goldman, P. S., Rosvold, H. E., Vest, B., & Galkin, T. W. (1971). Analysis of the delayed-alternation deficit produced by dorsolateral prefrontal lesions in the rhesus monkey. Journal of Comparative & Physiological Psychology, 77, 212–220.CrossRefGoogle Scholar
  26. Gross, C. G., & Weiskrantz, L. (1962). Evidence for dissociation of impairment on auditory discrimination and delayed response following lateral frontal lesions in monkeys. Experimental Neurology, 5, 453–476.CrossRefPubMedGoogle Scholar
  27. Hitzig, E. (1874). Untersuchungen über das Gehirn [Investigations of the brain]. Berlin: A. Hirschwald.Google Scholar
  28. Hunter, W. S. (1913). The delayed reaction in animals. Behavioral Monographs, 2, 21–30.Google Scholar
  29. Iversen, S. D., & Mishkin, M. (1970). Perseverative interference in monkeys following selective lesions of the inferior prefrontal convexity. Experimental Brain Research, 11, 376–386.CrossRefGoogle Scholar
  30. Jacobsen, C. F. (1936). Studies of cerebral function in primates: I. The functions of the frontal association areas in monkeys. Comparative Psychology Monographs, 13, 1–60.Google Scholar
  31. Kowalska, D. M., Bachevalier, J., & Mishkin, M. (1991). The role of the inferior prefrontal convexity in performance of delayed nonmatching-to-sample. Neuropsychologia, 29, 583–600.CrossRefPubMedGoogle Scholar
  32. Levy, R., & Goldman-Rakic, P. S. (1999). Association of storage and processing functions in the dorsolateral prefrontal cortex of the nonhuman primate. Journal of Neuroscience, 19, 5149–5158.PubMedGoogle Scholar
  33. Levy, R., & Goldman-Rakic, P. S. (2000). Segregation of working memory functions within the dorsolateral prefrontal cortex. Experimental Brain Research, 133, 23–32.CrossRefGoogle Scholar
  34. Miller, E. K. (2000). The prefrontal cortex and cognitive control. Nature Reviews Neuroscience, 1, 59–65.CrossRefPubMedGoogle Scholar
  35. Miller, M. H., & Orbach, J. (1972). Retention of spatial alternation following frontal lobe resections in stump-tailed macaques. Neuropsychologia, 10, 291–298.CrossRefPubMedGoogle Scholar
  36. Mishkin, M. (1954). Visual discrimination performance following partial ablations of the temporal lobe: II. Ventral surface vs. hippocampus. Journal of Comparative & Physiological Psychology, 47, 187–193.CrossRefGoogle Scholar
  37. Mishkin, M. (1957). Effects of small frontal lesions on delayed alternation in monkeys. Journal of Neurophysiology, 20, 615–622.PubMedGoogle Scholar
  38. Mishkin, M., & Manning, F. J. (1978). Non-spatial memory after selective prefrontal lesions in monkeys. Brain Research, 143, 313–323.CrossRefPubMedGoogle Scholar
  39. Mishkin, M., & Pribram, K. H. (1954). Visual discrimination performance following partial ablations of the temporal lobe: I. Ventral vs. lateral. Journal of Comparative & Physiological Psychology, 47, 14–20.CrossRefGoogle Scholar
  40. Mishkin, M., & Pribram, K. H. (1955). Analysis of the effects of frontal lesions in monkey: I. Variations of delayed alternation. Journal of Comparative & Physiological Psychology, 48, 492–495.CrossRefGoogle Scholar
  41. Mishkin, M., & Pribram, K. H. (1956). Analysis of the effects of frontal lesions in monkey: II. Variations of delayed response. Journal of Comparative & Physiological Psychology, 49, 36–40.CrossRefGoogle Scholar
  42. Mishkin, M., Vest, B., Waxler, M., & Rosvold, H. E. (1969). A reexamination of the effects of frontal lesions on object alternation. Neuropsychologia, 7, 357–364.CrossRefGoogle Scholar
  43. Murray, E. A., Bussey, T. J., & Wise, S. P. (2000). Role of prefrontal cortex in a network for arbitrary visuomotor mapping. Experimental Brain Research, 133, 114–129.CrossRefGoogle Scholar
  44. Ö Scalaidhe, S. P., Wilson, F. A., & Goldman-Rakic, P. S. (1999). Face-selective neurons during passive viewing and working memory performance of rhesus monkeys: Evidence for intrinsic specialization of neuronal coding. Cerebral Cortex, 9, 459–475.CrossRefGoogle Scholar
  45. Oscar-Berman, M. (1975). The effects of dorsolateral-frontal and ventrolateral-orbitofrontal lesions on spatial discrimination learning and delayed response in two modalities. Neuropsychologia, 13, 237–246.CrossRefPubMedGoogle Scholar
  46. Owen, A. M. (2000). The role of the lateral frontal cortex in mnemonic processing: The contribution of functional neuroimaging. Experimental Brain Research, 133, 33–43.CrossRefGoogle Scholar
  47. Owen, A. M., Stern, C. E., Look, R. B., Tracey, I., Rosen, B. R., & Petrides, M. (1998). Functional organization of spatial and nonspatial working memory processing within the human lateral frontal cortex. Proceedings of the National Academy of Sciences, 95, 7721–7726.CrossRefGoogle Scholar
  48. Parker, A., & Gaffan, D. (1998). Memory after frontal/temporal disconnection in monkeys: Conditional and nonconditional tasks, unilateral and bilateral frontal lesions. Neuropsychologia, 36, 259–271.CrossRefPubMedGoogle Scholar
  49. Passingham, R. [E.] (1975). Delayed matching after selective prefrontal lesions in monkeys (Macaca mulatta). Brain Research, 92, 89–102.CrossRefPubMedGoogle Scholar
  50. Passingham, R. E., Toni, I., & Rushworth, M. F. (2000). Specialization within the prefrontal cortex: The ventral prefrontal cortex and associative learning. Experimental Brain Research, 133, 103–113.CrossRefGoogle Scholar
  51. Petrides, M. (1991). Monitoring of selections of visual stimuli and the primate frontal cortex. Proceedings of the Royal Society of London: Series B, 246, 293–298.CrossRefGoogle Scholar
  52. Petrides, M. (1995). Impairments on nonspatial self-ordered and externally ordered working memory tasks after lesions of the mid-dorsal part of the lateral frontal cortex in the monkey. Journal of Neuroscience, 15, 359–375.PubMedGoogle Scholar
  53. Petrides, M. (2000a). Dissociable roles of mid-dorsolateral prefrontal and anterior inferotemporal cortex in visual working memory. Journal of Neuroscience, 20, 7496–7503.PubMedGoogle Scholar
  54. Petrides, M. (2000b). The role of the mid-dorsolateral prefrontal cortex in working memory. Experimental Brain Research, 133, 44–54.CrossRefGoogle Scholar
  55. Petrides, M., & Milner, B. (1982). Deficits on subject-ordered tasks after frontal- and temporal-lobe lesions in man. Neuropsychologia, 20, 249–262.CrossRefPubMedGoogle Scholar
  56. Petrides, M., & Pandya, D. N. (1994). Comparative architectonic analysis of the human and macaque frontal cortex. In F. Boller & J. Grafman (Eds.), Handbook of neuropsychology (Vol. 9, pp. 17–58). Amsterdam: Elsevier.Google Scholar
  57. Petrides, M., & Pandya, D. N. (2002). Comparative cytoarchitectonic analysis of the human and the macaque ventrolateral prefrontal cortex and corticocortical connection patterns in the monkey. European Journal of Neuroscience, 16, 291–310.CrossRefPubMedGoogle Scholar
  58. Pribram, K. H., & Mishkin, M. (1956). Analysis of the effects of frontal lesions in monkey: III. Object alternation. Journal of Comparative & Physiological Psychology, 49, 41–45.CrossRefGoogle Scholar
  59. Quintana, J., & Fuster, J. M. (1992). Mnemonic and predictive functions of cortical neurons in a memory task. NeuroReport, 3, 721–724.CrossRefPubMedGoogle Scholar
  60. Quintana, J., & Fuster, J. M. (1993). Spatial and temporal factors in the role of prefrontal and parietal cortex in visuomotor integration. Cerebral Cortex, 3, 122–132.CrossRefPubMedGoogle Scholar
  61. Quintana, J., Yajeya, J., & Fuster, J. M. (1988). Prefrontal representation of stimulus attributes during delay tasks: I. Unit activity in cross-temporal integration of sensory and sensory-motor information. Brain Research, 474, 211–221.CrossRefPubMedGoogle Scholar
  62. Rao, S. C., Rainer, G., & Miller, E. K. (1997, May 2). Integration of what and where in the primate prefrontal cortex. Science, 276, 821–824.CrossRefPubMedGoogle Scholar
  63. Rosenkilde, C. E., Rosvold, H. E., & Mishkin, M. (1981). Time discrimination with positional responses after selective prefrontal lesions in monkeys. Brain Research, 210, 129–144.CrossRefPubMedGoogle Scholar
  64. Rushworth, M. F., Nixon, P. D., Eacott, M. J., & Passingham, R. E. (1997). Ventral prefrontal cortex is not essential for working memory. Journal of Neuroscience, 17, 4829–4838.PubMedGoogle Scholar
  65. Shindy, W. W., Posley, K. A., & Fuster, J. M. (1994). Reversible deficit in haptic delay tasks from cooling prefrontal cortex. Cerebral Cortex, 4, 443–450.CrossRefPubMedGoogle Scholar
  66. Stamm, J. S. (1973). Functional dissociation between the inferior and arcuate segments of dorsolateral prefrontal cortex in the monkey. Neuropsychologia, 11, 181–190.CrossRefPubMedGoogle Scholar
  67. Stamm, J. S., & Weber-Levine, M. L. (1971). Delayed alternation impairments following selective prefrontal cortical ablations in monkeys. Experimental Neurology, 33, 263–278.CrossRefPubMedGoogle Scholar
  68. Ungerleider, L. G., Courtney, S. M., & Haxby, J. V. (1998). A neural system for human visual working memory. Proceedings of the National Academy of Sciences, 95, 883–890.CrossRefGoogle Scholar
  69. Ungerleider, L. G., & Mishkin, M. (1982). Two cortical visual systems. In R. J. W. Mansfield (Ed.), Analysis of visual behavior (pp. 549–586). Cambridge, MA: MIT Press.Google Scholar
  70. Volgushev, M., Vidyasagar, T. R., Chistiakova, M., & Eysel, U. T. (2000). Synaptic transmission in the neocortex during reversible cooling. Neuroscience, 98, 9–22.CrossRefPubMedGoogle Scholar
  71. Walker, A. E. (1940). A cytoarchitectural study of the prefrontal area of the macaque monkey. Journal of Comparative Neurology, 73, 59–86.CrossRefGoogle Scholar
  72. Wang, M., Zhang, H., & Li, B. M. (2000). Deficit in conditional visuomotor learning by local infusion of bicuculline into the ventral prefrontal cortex in monkeys. European Journal of Neuroscience, 12, 3787–3796.CrossRefPubMedGoogle Scholar
  73. Wilson, F. A., Ö Scalaidhe, S. P., & Goldman-Rakic, P. S. (1993, June 25). Dissociation of object and spatial processing domains in primate prefrontal cortex. Science, 260, 1955–1958.CrossRefPubMedGoogle Scholar
  74. Wise, S. P., & Murray, E. A. (2000). Arbitrary associations between antecedents and actions. Trends in Neurosciences, 23, 271–276.CrossRefPubMedGoogle Scholar

Copyright information

© Psychonomic Society, Inc. 2004

Authors and Affiliations

  1. 1.Department of Psychology, Center for Neural ScienceNew York UniversityNew York
  2. 2.University of CaliforniaBerkeley

Personalised recommendations