Cognitive, Affective, & Behavioral Neuroscience

, Volume 3, Issue 4, pp 255–274 | Cite as

Neuroimaging studies of working memory:

Article

Abstract

We performed meta-analyses on 60 neuroimaging (PET and fMRI) studies of working memory (WM), considering three types of storage material (spatial, verbal, and object), three types of executive function (continuous updating of WM, memory for temporal order, and manipulation of information in WM), and interactions between material and executive function. Analyses of material type showed the expected dorsal-ventral dissociation between spatial and nonspatial storage in the posterior cortex, but not in the frontal cortex. Some support was found for left frontal dominance in verbal WM, but only for tasks with low executive demand. Executive demand increased right lateralization in the frontal cortex for spatial WM. Tasks requiring executive processing generally produce more dorsal frontal activations than do storage-only tasks, but not all executive processes show this pattern. Brodmann’s areas (BAs) 6, 8, and 9, in the superior frontal cortex, respond most when WM must be continuously updated and when memory for temporal order must be maintained. Right BAs 10 and 47, in the ventral frontal cortex, respond more frequently with demand for manipulation (including dual-task requirements or mental operations). BA 7, in the posterior parietal cortex, is involved in all types of executive function. Finally, we consider a potential fourth executive function: selective attention to features of a stimulus to be stored in WM, which leads to increased probability of activating the medial prefrontal cortex (BA 32) in storage tasks.

References

  1. Aldridge, J. W., & Berridge, K. C. (1998). Coding of serial order by neostriatal neurons: A “natural action” approach to movement sequence. Journal of Neuroscience, 18, 2777–2787.PubMedGoogle Scholar
  2. Baddeley, A. (1992). Working memory. Science, 255, 556–559.PubMedCrossRefGoogle Scholar
  3. Barch, D. M., Braver, T. S., Nystrom, L. E., Forman, S. D., Noll, D. C., & Cohen, J. D. (1997). Dissociating working memory from task difficulty in human prefrontal cortex. Neuropsychologia, 35, 1373–1380.PubMedCrossRefGoogle Scholar
  4. Belger, A., Puce, A., Krystal, J. H., Gore, J. C., Goldman-Rakic, P., & McCarthy, G. (1998). Dissociation of mnemonic and perceptual processes during spatial and nonspatial working memory using fMRI. Human Brain Mapping, 6, 14–32.PubMedCrossRefGoogle Scholar
  5. Berman, R. A., & Colby, C. L. (2002). Spatial working memory in human extrastriate cortex. Physiology & Behavior, 77, 621–627.CrossRefGoogle Scholar
  6. Bor, D., Duncan, J., & Owen, A. M. (2001). The role of spatial configuration in tests of working memory explored with functional neuroimaging. Scandinavian Journal of Psychology, 42, 217–224.PubMedCrossRefGoogle Scholar
  7. Braver, T. S., Barch, D. M., Kelley, W. M., Buckner, R. L., Cohen, N. J., Miezin, F. M., Snyder, A. Z., Ollinger, J. M., Akbudak, E., Conturo, T. E., & Petersen, S. E. (2001). Direct comparison of prefrontal cortex regions engaged by working and long-term memory tasks. NeuroImage, 14, 48–59.PubMedCrossRefGoogle Scholar
  8. Braver, T. S., & Bongiolatti, S. R. (2002). The role of frontopolar cortex in subgoal processing during working memory. NeuroImage, 15, 523–536.PubMedCrossRefGoogle Scholar
  9. Braver, T. S., Cohen, J. D., Nystrom, L. E., Jonides, J., Smith, E. E., & Noll, D. C. (1997). A parametric study of prefrontal cortex involvement in human working memory. NeuroImage, 5, 49–62.PubMedCrossRefGoogle Scholar
  10. Bunge, S. A., Klingberg, T., Jacobsen, R. B., & Gabrieli, J. D. (2000). A resource model of the neural basis of executive working memory. Proceedings of the National Academy of Sciences, 97, 3573–3578.CrossRefGoogle Scholar
  11. Cabeza, R., & Nyberg, L. (2000). Imaging cognition II: An empirical review of 275 PET and fMRI studies. Journal of Cognitive Neuroscience, 12, 1–47.PubMedCrossRefGoogle Scholar
  12. Callicott, J. H., Mattay, V. S., Bertolino, A., Finn, K., Coppola, R., Frank, J. A., Goldberg, T. E., & Weinberger, D. R. (1999). Physiological characteristics of capacity constraints in working memory as revealed by functional MRI. Cerebral Cortex, 9, 20–26.PubMedCrossRefGoogle Scholar
  13. Carter, C. S., Braver, T. S., Barch, D. M., Botvinick, M. M., Noll, D., & Cohen, J. D. (1998). Anterior cingulate cortex, error detection, and the online monitoring of performance. Science, 280, 747–749.PubMedCrossRefGoogle Scholar
  14. Casey, B. J., Cohen, J. D., O’Craven, K., Davidson, R. J., Irwin, W., Nelson, C. A., Noll, D. C., Hu, X., Lowe, M. J., Rosen, B. R., Truwitt, C. L., & Turski, P. A. (1998). Reproducibility of fMRI results across four institutions using a spatial working memory task. NeuroImage, 8, 249–261.PubMedCrossRefGoogle Scholar
  15. Chein, J. M., & Fiez, J. A. (2001). Dissociation of verbal working memory system components using a delayed serial recall task. Cerebral Cortex, 11, 1003–1014.PubMedCrossRefGoogle Scholar
  16. Chein, J. M., Fissell, K., Jacobs, S., & Fiez, J. A. (2002). Functional heterogeneity within Broca’s area during verbal working memory. Physiology & Behavior, 77, 635–639.CrossRefGoogle Scholar
  17. Clark, C. R., Egan, G. F., McFarlane, A. C., Morris, P., Weber, D., Sonkkilla, C., Marcina, J., & Tochon-Danguy, H. J. (2000). Updating working memory for words: A PET activation study. Human Brain Mapping, 9, 42–54.PubMedCrossRefGoogle Scholar
  18. Cohen, J. D., Dunbar, K., & McClelland, J. L. (1990). On the control of automatic processes: A parallel distributed processing account of the Stroop effect. Psychological Review, 97, 332–361.PubMedCrossRefGoogle Scholar
  19. Cohen, J. D., Perlstein, W. M., Braver, T. S., Nystrom, L. E., Noll, D. C., Jonides, J., & Smith, E. E. (1997). Temporal dynamics of brain activation during a working memory task. Nature, 386, 604–608.PubMedCrossRefGoogle Scholar
  20. Colby, C. L., & Goldberg, M. E. (1999). Space and attention in parietal cortex. Annual Review of Neuroscience, 22, 319–349.PubMedCrossRefGoogle Scholar
  21. Collette, F., Salmon, E., Van der Linden, M., Chicherio, C., Belleville, S., Degueldre, C., Delfiore, G., & Franck, G. (1999). Regional brain activity during tasks devoted to the central executive of working memory. Cognitive Brain Research, 7, 411–417.PubMedCrossRefGoogle Scholar
  22. Cornette, L., Dupont, P., Bormans, G., Mortelmans, L., & Orban, G. A. (2001). Separate neural correlates for the mnemonic components of successive discrimination and working memory tasks. Cerebral Cortex, 11, 59–72.PubMedCrossRefGoogle Scholar
  23. Cornette, L., Dupont, P., Salmon, E., & Orban, G. A. (2001). The neural substrate of orientation working memory. Journal of Cognitive Neuroscience, 13, 813–828.PubMedCrossRefGoogle Scholar
  24. Courtney, S. M., Petit, L., Haxby, J. V., & Ungerleider, L. G. (1998). The role of prefrontal cortex in working memory: Examining the contents of consciousness. Philosophical Transactions of the Royal Society of London: Series B, 353, 1819–1828.CrossRefGoogle Scholar
  25. Courtney, S. M., Ungerleider, L. G., Keil, K., & Haxby, J. V. (1996). Object and spatial visual working memory activate separate neural systems in human cortex. Cerebral Cortex, 6, 39–49.PubMedCrossRefGoogle Scholar
  26. Courtney, S. M., Ungerleider, L. G., Keil, K., & Haxby, J. V. (1997). Transient and sustained activity in a distributed neural system for human working memory. Nature, 386, 608–611.PubMedCrossRefGoogle Scholar
  27. Crosson, B., Rao, S. M., Woodley, S. J., Rosen, A. C., Bobholz, J. A., Mayer, A., Cunningham, J. M., Hammeke, T. A., Fuller, S. A., Binder, J. R., Cox, R. W., & Stein, E. A. (1999). Mapping of semantic, phonological, and orthographic verbal working memory in normal adults with functional magnetic resonance imaging. Neuropsychology, 13, 171–187.PubMedCrossRefGoogle Scholar
  28. Curtis, C. E., Zald, D. H., & Pardo, J. V. (2000). Organization of working memory within the human prefrontal cortex: A PET study of self-ordered object working memory. Neuropsychologia, 38, 1503–1510.PubMedCrossRefGoogle Scholar
  29. Dade, L. A., Zatorre, R. J., Evans, A. C., & Jones-Gotman, M. (2001). Working memory in another dimension: Functional imaging of human olfactory working memory. NeuroImage, 14, 650–660.PubMedCrossRefGoogle Scholar
  30. de Fockert, J. W., Rees, G., Frith, C. D., & Lavie, N. (2001). The role of working memory in visual selective attention. Science, 291, 1803–1806.PubMedCrossRefGoogle Scholar
  31. D’Esposito, M., Aguirre, G. K., Zarahn, E., Ballard, D., Shin, R. K., & Lease, J. (1998). Functional MRI studies of spatial and nonspatial working memory. Cognitive Brain Research, 7, 1–13.PubMedCrossRefGoogle Scholar
  32. D’Esposito, M., Postle, B. R., Jonides, J., & Smith, E. E. (1999). The neural substrate and temporal dynamics of interference effects in working memory as revealed by event-related functional MRI. Proceedings of the National Academy of Sciences, 96, 7514–7519.CrossRefGoogle Scholar
  33. Devinsky, O., Morrell, M. J., & Vogt, B. A. (1995). Contributions of anterior cingulate cortex to behaviour. Brain, 118(Pt. 1), 279–306.PubMedCrossRefGoogle Scholar
  34. Diwadkar, V. A., Carpenter, P. A., & Just, M. A. (2000). Collaborative activity between parietal and dorso-lateral prefrontal cortex in dynamic spatial working memory revealed by fMRI. NeuroImage, 12, 85–99.PubMedCrossRefGoogle Scholar
  35. Druzgal, T. J., & D’ Esposito, M. (2001). Activity in fusiform face area modulated as a function of working memory load. Cognitive Brain Research, 10, 355–364.PubMedCrossRefGoogle Scholar
  36. Fan, J., Flombaum, J. I., McCandliss, B. D., Thomas, K. M., & Posner, M. I. (2003). Cognitive and brain consequences of conflict. NeuroImage, 18, 42–57.PubMedCrossRefGoogle Scholar
  37. Funahashi, S., Bruce, C. J., & Goldman-Rakic, P. S. (1989). Mnemonic coding of visual space in the monkey’s dorsolateral prefrontal cortex. Journal of Neurophysiology, 61, 331–349.PubMedGoogle Scholar
  38. Funahashi, S., Chafee, M. V., & Goldman-Rakic, P. S. (1993). Prefrontal neuronal activity in rhesus monkeys performing a delayed anti-saccade task. Nature, 365, 753–756.PubMedCrossRefGoogle Scholar
  39. Grady, C. L., McIntosh, A. R., Bookstein, F., Horwitz, B., Rapoport, S. I., & Haxby, J. V. (1998). Age-related changes in regional cerebral blood flow during working memory for faces. NeuroImage, 8, 409–425.PubMedCrossRefGoogle Scholar
  40. Haut, M. W., Leach, S., Kuwabara, H., Whyte, S., Callahan, T., Ducatman, A., Lombardo, L. J., & Gupta, N. (2000). Verbal working memory and solvent exposure: A positron emission tomography study. Neuropsychology, 14, 551–558.PubMedCrossRefGoogle Scholar
  41. Haxby, J. V., Petit, L., Ungerleider, L. G., & Courtney, S. M. (2000). Distinguishing the functional roles of multiple regions in distributed neural systems for visual working memory. NeuroImage, 11(5, Pt. 1), 380–391.PubMedCrossRefGoogle Scholar
  42. Honey, G. D., Bullmore, E. T., & Sharma, T. (2000). Prolonged reaction time to a verbal working memory task predicts increased power of posterior parietal cortical activation. NeuroImage, 12, 495–503.PubMedCrossRefGoogle Scholar
  43. Jiang, Y., Haxby, J. V., Martin, A., Ungerleider, L. G., & Parasuraman, R. (2000). Complementary neural mechanisms for tracking items in human working memory. Science, 287, 643–646.PubMedCrossRefGoogle Scholar
  44. Jonides, J., Badre, D., Curtis, C., Thompson-Schill, S., & Smith, E. E. (2002). Mechanisms of conflict resolution in the prefrontal cortex. In D. T. Stuss & R. L. Knight (Eds.), The frontal lobes (pp. 233–245). Oxford: Oxford University Press.CrossRefGoogle Scholar
  45. Jonides, J., Schumacher, E. H., Smith, E. E., Koeppe, R. A., Awh, E., Reuter-Lorenz, P. A., Marshuetz, C., & Willis, C. R. (1998). The role of parietal cortex in verbal working memory. Journal of Neuroscience, 18, 5026–5034.PubMedGoogle Scholar
  46. Jonides, J., Smith, E. E., Koeppe, R. A., Awh, E., Minoshima, S., & Mintun, M. A. (1993). Spatial working memory in humans as revealed by PET. Nature, 363, 623–625.PubMedCrossRefGoogle Scholar
  47. Jonides, J., Smith, E. E., Marshuetz, C., Koeppe, R. A., & Reuter-Lorenz, P. A. (1998). Inhibition in verbal working memory revealed by brain activation. Proceedings of the National Academy of Sciences, 95, 8410–8413.CrossRefGoogle Scholar
  48. Kaufman, L., & Rousseeuw, P. J. (1987). Clustering by means of medoids In Y. Dodge (Ed.), Statistical data analysis based on the L1 norm (pp. 405–416). Amsterdam: North-Holland.Google Scholar
  49. Kaufman, L., & Rousseeuw, P. J. (1990). Finding groups in data. New York: Wiley.CrossRefGoogle Scholar
  50. Klingberg, T., O’Sullivan, B. T., & Roland, P. E. (1997). Bilateral activation of fronto-parietal networks by incrementing demand in a working memory task. Cerebral Cortex, 7, 465–471.PubMedCrossRefGoogle Scholar
  51. LaBar, K. S., Gitelman, D. R., Parrish, T. B., & Mesulam, M. (1999). Neuroanatomic overlap of working memory and spatial attention networks: A functional MRI comparison within subjects. NeuroImage, 10, 695–704.PubMedCrossRefGoogle Scholar
  52. Landro, N. I., Rund, B. R., Lund, A., Sundet, K., Mjellem, N., Asbjornsen, A., Thomsen, T., Ersland, L., Lundervold, A., Smievoll, A. I., Egeland, J., Stordal, K., Roness, A., Sundberg, H., & Hugdahl, K. (2001). Honig’s model of working memory and brain activation: An fMRI study. NeuroReport, 12, 4047–4054.PubMedCrossRefGoogle Scholar
  53. Levy, R., & Goldman-Rakic, P. S. (1999). Association of storage and processing functions in the dorsolateral prefrontal cortex of the nonhuman primate. Journal of Neuroscience, 19, 5149–5158.PubMedGoogle Scholar
  54. MacQueen, J. B. (1967). Some methods for classification and analysis of multivariate observations. Paper presented at the 5th Berkeley Symposium on Mathematical Statistics and Probability.Google Scholar
  55. Marshuetz, C., Smith, E. E., Jonides, J., DeGutis, J., & Chenevert, T. L. (2000). Order information in working memory: fMRI evidence for parietal and prefrontal mechanisms. Journal of Cognitive Neuroscience, 12(Suppl. 2), 130–144.PubMedCrossRefGoogle Scholar
  56. McCarthy, G., Puce, A., Constable, R. T., Krystal, J. H., Gore, J. C., & Goldman-Rakic, P. (1996). Activation of human prefrontal cortex during spatial and nonspatial working memory tasks measured by functional MRI. Cerebral Cortex, 6, 600–611.PubMedCrossRefGoogle Scholar
  57. Mecklinger, A., Bosch, V., Gruenewald, C., Bentin, S., & von Cramon, D. Y. (2000). What have Klingon letters and faces in common? An fMRI study on content-specific working memory systems. Human Brain Mapping, 11, 146–161.PubMedCrossRefGoogle Scholar
  58. Miller, E. K., & Cohen, J. D. (2001). An integrative theory of prefrontal cortex function. Annual Review of Neuroscience, 24, 167–202.PubMedCrossRefGoogle Scholar
  59. Mitchell, K. J., Johnson, M. K., Raye, C. L., & D’Esposito, M. (2000). fMRI evidence of age-related hippocampal dysfunction in feature binding in working memory. Cognitive Brain Research, 10, 197–206.PubMedCrossRefGoogle Scholar
  60. Miyake, A., Friedman, N. P., Emerson, M. J., Witzki, A. H., & Howerter, A. (2000). The unity and diversity of executive functions and their contributions to complex “frontal lobe” tasks: A latent variable analysis. Cognitive Psychology, 41, 49–100.PubMedCrossRefGoogle Scholar
  61. Nystrom, L. E., Braver, T. S., Sabb, F. W., Delgado, M. R., Noll, D. C., & Cohen, J. D. (2000). Working memory for letters, shapes, and locations: fMRI evidence against stimulus-based regional organization in human prefrontal cortex. NeuroImage, 11(5, Pt. 1), 424–446.PubMedCrossRefGoogle Scholar
  62. Owen, A. M. (1997). The functional organization of working memory processes within human lateral frontal cortex: The contribution of functional neuroimaging. European Journal of Neuroscience, 9, 1329–1339.PubMedCrossRefGoogle Scholar
  63. Owen, A. M. (2000). The role of the lateral frontal cortex in mnemonic processing: The contribution of functional neuroimaging. Experimental Brain Research, 133, 33–43.CrossRefGoogle Scholar
  64. Owen, A. M., Evans, A. C., & Petrides, M. (1996). Evidence for a two-stage model of spatial working memory processing within the lateral frontal cortex: A positron emission tomography study. Cerebral Cortex, 6, 31–38.PubMedCrossRefGoogle Scholar
  65. Owen, A. M., Herrod, N. J., Menon, D. K., Clark, J. C., Downey, S. P., Carpenter, T. A., Minhas, P. S., Turkheimer, F. E., Williams, E. J., Robbins, T. W., Sahakian, B. J., Petrides, M., & Pickard, J. D. (1999). Redefining the functional organization of working memory processes within human lateral prefrontal cortex. European Journal of Neuroscience, 11, 567–574.PubMedCrossRefGoogle Scholar
  66. Owen, A. M., Stern, C. E., Look, R. B., Tracey, I., Rosen, B. R., & Petrides, M. (1998). Functional organization of spatial and nonspatial working memory processing within the human lateral frontal cortex. Proceedings of the National Academy of Sciences, 95, 7721–7726.CrossRefGoogle Scholar
  67. Paulesu, E., Frith, C. D., & Frackowiak, R. S. (1993). The neural correlates of the verbal component of working memory. Nature, 362, 342–345.PubMedCrossRefGoogle Scholar
  68. Perlstein, W. M., Elbert, T., & Stenger, V. A. (2002). Dissociation in human prefrontal cortex of affective influences on working memory-related activity. Proceedings of the National Academy of Sciences, 99, 1736–1741.CrossRefGoogle Scholar
  69. Petit, L., Courtney, S. M., Ungerleider, L. G., & Haxby, J. V. (1998). Sustained activity in the medial wall during working memory delays. Journal of Neuroscience, 18, 9429–9437.PubMedGoogle Scholar
  70. Petrides, M. (1991). Functional specialization within the dorsolateral frontal cortex for serial order memory. Proceedings of the Royal Society of London: Series B, 246, 299–306.CrossRefGoogle Scholar
  71. Petrides, M., Alivisatos, B., Meyer, E., & Evans, A. C. (1993). Functional activation of the human frontal cortex during the performance of verbal working memory tasks. Proceedings of the National Academy of Sciences, 90, 878–882.CrossRefGoogle Scholar
  72. Phan, K. L., Wager, T., Taylor, S. F., & Liberzon, I. (2002). Functional neuroanatomy of emotion: A meta-analysis of emotion activation studies in PET and fMRI. NeuroImage, 16, 331–348.PubMedCrossRefGoogle Scholar
  73. Picard, N., & Strick, P. L. (1996). Motor areas of the medial wall: A review of their location and functional activation. Cerebral Cortex, 6, 342–353.PubMedCrossRefGoogle Scholar
  74. Pollmann, S. (2001). Switching between dimensions, locations, and responses: The role of the left frontopolar cortex. NeuroImage, 14(1,Pt. 2), S118-S124.PubMedCrossRefGoogle Scholar
  75. Pollmann, S., & von Cramon, D. Y. (2000). Object working memory and visuospatial processing: Functional neuroanatomy analyzed by event-related fMRI. Experimental Brain Research, 133, 12–22.CrossRefGoogle Scholar
  76. Rama, P., Martinkauppi, S., Linnankoski, I., Koivisto, J., Aronen, H. J., & Carlson, S. (2001). Working memory of identification of emotional vocal expressions: An fMRI study. NeuroImage, 13(6, Pt. 1), 1090–1101.PubMedCrossRefGoogle Scholar
  77. Reuter-Lorenz, P. A., Jonides, J., Smith, E. E., Hartley, A., Miller, A., Marshuetz, C., & Koeppe, R. A. (2000). Age differences in the frontal lateralization of verbal and spatial working memory revealed by PET. Journal of Cognitive Neuroscience, 12, 174–187.PubMedCrossRefGoogle Scholar
  78. Rockland, K. S. (2002). Visual cortical organization at the single axon level: A beginning. Neuroscience Research, 42, 155–166.PubMedCrossRefGoogle Scholar
  79. Rowe, J. B., & Passingham, R. E. (2001). Working memory for location and time: Activity in prefrontal area 46 relates to selection rather than maintenance in memory. NeuroImage, 14(1, Pt. 1), 77–86.PubMedCrossRefGoogle Scholar
  80. Rubenstein, J. S., Meyer, D. E., & Evans, J. E. (2001). Executive control of cognitive processes in task switching. Journal of Experimental Psychology: Human Perception & Performance, 27, 763–797.CrossRefGoogle Scholar
  81. Rypma, B., Prabhakaran, V., Desmond, J. E., Glover, G. H., & Gabrieli, J. D. (1999). Load-dependent roles of frontal brain regions in the maintenance of working memory. NeuroImage, 9, 216–226.PubMedCrossRefGoogle Scholar
  82. Schumacher, E. H., Lauber, E., Awh, E., Jonides, J., Smith, E. E., & Koeppe, R. A. (1996). PET evidence for an amodal verbal working memory system. NeuroImage, 3, 79–88.PubMedCrossRefGoogle Scholar
  83. Smith, E. E., Geva, A., Jonides, J., Miller, A., Reuter-Lorenz, P., & Koeppe, R. A. (2001). The neural basis of task-switching in working memory: Effects of performance and aging. Proceedings of the National Academy of Sciences, 98, 2095–2100.CrossRefGoogle Scholar
  84. Smith, E. E., & Jonides, J. (1999). Storage and executive processes in the frontal lobes. Science, 283, 1657–1661.PubMedCrossRefGoogle Scholar
  85. Smith, E. E., & Jonides, J. (2003). Executive control and thought. In L. R. Squire (Ed.), Fundamental neuroscience (2nd ed., pp. 1377–1394). San Diego: Academic Press.Google Scholar
  86. Smith, E. E., Jonides, J., & Koeppe, R. A. (1996). Dissociating verbal and spatial working memory using PET. Cerebral Cortex, 6, 11–20.PubMedCrossRefGoogle Scholar
  87. Smith, E. E., Jonides, J., Koeppe, R. A., Awh, E., Schumacher, E. H., & Minoshima, S. (1995). Spatial versus object working-memory: PET investigations. Journal of Cognitive Neuroscience, 7, 337–356.CrossRefGoogle Scholar
  88. Smith, E. E., Jonides, J., Marshuetz, C., & Koeppe, R. A. (1998). Components of verbal working memory: Evidence from neuroimaging. Proceedings of the National Academy of Sciences, 95, 876–882.CrossRefGoogle Scholar
  89. Stern, C. E., Owen, A. M., Tracey, I., Look, R. B., Rosen, B. R., & Petrides, M. (2000). Activity in ventrolateral and mid-dorsolateral prefrontal cortex during nonspatial visual working memory processing: Evidence from functional magnetic resonance imaging. NeuroImage, 11(5, Pt. 1), 392–399.PubMedCrossRefGoogle Scholar
  90. Sylvester, C. Y., Wager, T. D., Lacey, S. C., Hernandez, L., Nichols, T. E., Smith, E. E., & Jonides, J. (2003). Switching attention and resolving interference: fMRI measures of executive functions. Neuropsychologia, 41, 357–370.PubMedCrossRefGoogle Scholar
  91. Thomas, K. M., King, S. W., Franzen, P. L., Welsh, T. F., Berkowitz, A. L., Noll, D. C., Birmaher, V., & Casey, B. J. (1999). A developmental functional MRI study of spatial working memory. NeuroImage, 10(3, Pt. 1), 327–338.PubMedCrossRefGoogle Scholar
  92. Tsukiura, T., Fujii, T., Takahashi, T., Xiao, R., Inase, M., Iijima, T., Yamadori, A., & Okuda, J. (2001). Neuroanatomical discrimination between manipulating and maintaining processes involved in verbal working memory: A functional MRI study. Cognitive Brain Research, 11, 13–21.PubMedCrossRefGoogle Scholar
  93. Ungerleider, L. G., & Haxby, J. V. (1994). “What” and “where” in the human brain. Current Opinion in Neurobiology, 4, 157–165.PubMedCrossRefGoogle Scholar
  94. Van der Linden, M., Collette, F., Salmon, E., Delfiore, G., Degueldre, C., Luxen, A., & Franck, G. (1999). The neural correlates of updating information in verbal working memory. Memory, 7, 549–560.PubMedCrossRefGoogle Scholar
  95. Wager, T. D., Jonides, J., Smith, E. E., Hernandez, L., Bryck, R., Nichols, T. E., Sylvester, C. C., Lacey, S. C., & Noll, D. C. (2002, April). Response conflict and cognitive control: Item and set-related processes in a Stroop-like task. Poster presented at the Annual Meeting of the Cognitive Neuroscience Society, San Francisco.Google Scholar
  96. Wager, T. D., Phan, K. L., Liberzon, I., & Taylor, S. F. (2003). Valence, gender, and lateralization of functional brain anatomy in emotion: A meta-analysis of findings from neuroimaging. NeuroImage, 19, 513–531.PubMedCrossRefGoogle Scholar
  97. Wilson, F. A., Scalaidhe, S. P., & Goldman-Rakic, P. S. (1993). Dissociation of object and spatial processing domains in primate prefrontal cortex. Science, 260, 1955–1958.PubMedCrossRefGoogle Scholar
  98. Zurowski, B., Gostomzyk, J., Gron, G., Weller, R., Schirrmeister, H., Neumeier, B., Spitzer, M., Reske, S. N., & Walter, H. (2002). Dissociating a common working memory network from different neural substrates of phonological and spatial stimulus processing. NeuroImage, 15, 45–57.PubMedCrossRefGoogle Scholar

Copyright information

© Psychonomic Society, Inc. 2003

Authors and Affiliations

  1. 1.Department of PsychologyColumbia UniversityNew York

Personalised recommendations