A computational account of altered error processing in older age: Dopamine and the error-related negativity

  • Sander NieuwenhuisEmail author
  • K. Richard Ridderinkhof
  • Durk Talsma
  • Michael G. H. Coles
  • Clay B. Holroyd
  • Albert Kok
  • Maurits W. van der Molen


When participants commit errors or receive feedback signaling that they have made an error, a negative brain potential is elicited. According to Holroyd and Coles’s (in press) neurocomputational model of error processing, this error-related negativity (ERN) is elicited when the brain first detects that the consequences of an action are worse than expected. To study age-related changes in error processing, we obtained performance and ERN measures of younger and high-functioning older adults. Experiment 1 demonstrated reduced ERN amplitudes in older adults in the context of otherwise intact brain potentials. This result could not be attributed to uncertainty about the required response in older adults. Experiment 2 revealed impaired performance and reduced response- and feedback-related ERNs of older adults in a probabilistic learning task. These age changes could be simulated by manipulation of a single parameter of the neurocomputational model, this manipulation corresponding to weakened phasic activity of the mesencephalic dopamine system.


Target Letter Invalid Trial Imperative Stimulus Choice Reaction Time Task Invalid Condition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Arnsten, A. F. T. (1993). Catecholamine mechanisms in age-related cognitive decline. Neurobiology of Aging, 14, 639–641.PubMedCrossRefGoogle Scholar
  2. Arnsten, A. F. T., & Goldman-Rakic, P. S. (1985). Alpha 2-adrenergic mechanisms in prefrontal cortex associated with cognitive decline in aged nonhuman primates. Science, 230, 1273–1276.PubMedCrossRefGoogle Scholar
  3. Backman, L., Ginovart, N., Dixon, R. A., Wahlin, T. B., Wahlin, A., Halldin, C., & Farde L. (2000). Age-related cognitive deficits mediated by changes in the striatal dopamine system. American Journal of Psychiatry, 157, 635–637.PubMedCrossRefGoogle Scholar
  4. Band, G. P. H., & Kok, A. (2000). Age effects on response monitoring in a mental-rotation task. Biological Psychology, 51, 201–221.PubMedCrossRefGoogle Scholar
  5. Bernstein, P. S., Scheffers, M. K., & Coles, M. G. H. (1995). “Where did I go wrong?” A psychophysiological analysis of error detection. Journal of Experimental Psychology: Human Perception & Performance, 21, 1312–1322.CrossRefGoogle Scholar
  6. Botvinick, M. M., Braver, T. S., Barch, D. M., Carter, C. S., & Cohen, J. D. (2001). Evaluating the demand for control: Anterior cingulate cortex and conflict monitoring. Psychological Review, 108, 624–652.PubMedCrossRefGoogle Scholar
  7. Braver, T. S., Barch, D. M., Keys, B. A., Carter, C. S., Cohen, J. D., Kaye, J. A., Janowsky, J. S., Taylor, S. F., Yesavage, J. A., Mumenthaler, M. S., Jagust, W. J., & Reed, B. R. (2001). Context processing in older adults: Evidence for a theory relating cognitive control to neurobiology in healthy aging. Journal of Experimental Psychology: General, 130, 746–763.CrossRefGoogle Scholar
  8. Braver, T. S., & Cohen, J. D. (2000). On the control of control: The role of dopamine in regulating prefrontal function and working memory. In S. Monsell & J. Driver (Eds.), Attention and performance XVIII: Control of cognitive processes (pp. 713–737). Cambridge, MA: MIT Press.Google Scholar
  9. Carter, C. S., Braver, T. S., Barch, D. M., Botvinick, M. M., Noll, D., & Cohen, J. D. (1998). Anterior cingulate cortex, error detection, and the online monitoring of performance. Science, 280, 747–749.PubMedCrossRefGoogle Scholar
  10. Coles, M. G. H., Gratton, G., Bashore, T. R., Eriksen, C. W., & Donchin, E. (1985). A psychophysiological investigation of the continuous flow model of human information processing. Journal of Experimental Psychology: Human Perception & Performance, 11, 529–553.CrossRefGoogle Scholar
  11. Coles, M. G. H., Scheffers, M. K., & Holroyd, C. B. (1998). Berger’s dream: The error-related negativity and modern cognitive psychophysiology. In H. Witte, U. Zwiener, B. Schack, & A. Doering (Eds.), Quantitative and topological EEG and MEG analysis (pp. 96–102). Jena-Erlangen: Druckhaus Mayer.Google Scholar
  12. Coles, M. G. H., Scheffers, M. K., & Holroyd, C. B. (2001). Why is there an ERN/Ne on correct trials? Response representations, stimulusrelated components, and the theory of error-processing. Biological Psychology, 56, 173–189.PubMedCrossRefGoogle Scholar
  13. Dehaene, S., Posner, M. I., & Tucker, D. M. (1994). Localization of a neural system for error detection and compensation. Psychological Science, 5, 303–305.CrossRefGoogle Scholar
  14. Eriksen, B. A., & Eriksen, C. W. (1974). Effects of noise letters upon the identification of a target letter in a nonsearch task. Perception & Psychophysics, 16, 143–149.Google Scholar
  15. Falkenstein, M., Hielscher, H., Dziobek, I., Schwarzenau, P., Hoormann, J., Sunderman, B., & Hohnsbein, J. (2001). Action monitoring, error detection, and the basal ganglia: An ERP study. Neuro-Report, 12, 157–161.Google Scholar
  16. Falkenstein, M., Hohnsbein, J., Hoormann, J., & Blanke, L. (1991). Effects of crossmodal divided attention on late ERP components. II. Error processing in choice reaction tasks. Electroencephalography & Clinical Neurophysiology, 78, 447–455.CrossRefGoogle Scholar
  17. Falkenstein, M., Hoormann, J., Christ, S., & Hohnsbein, J. (2000). ERP components on reaction errors and their functional significance: A tutorial. Biological Psychology, 51, 87–107.PubMedCrossRefGoogle Scholar
  18. Falkenstein, M., Hoormann, & Hohnsbein, J. (2001). Changes of error-related ERPs with age. Experimental Brain Research, 138, 258–262.CrossRefGoogle Scholar
  19. Ford, J. M. (1999). Schizophrenia: The broken P300 and beyond. Psychophysiology, 36, 667–682.PubMedCrossRefGoogle Scholar
  20. Gehring, W. J., Goss, B., Coles, M. G. H., Meyer, D. E., & Donchin, E. (1993). A neural system for error detection and compensation. Psychological Science, 4, 385–390.CrossRefGoogle Scholar
  21. Gehring, W. J., Himle, J., & Nisenson, L. G. (2000). Action-monitoring dysfunction in obsessive-compulsive disorder. Psychological Science, 11, 1–6.PubMedCrossRefGoogle Scholar
  22. Gehring, W. J., & Knight, R. T. (2000). Prefrontal-cingulate interactions in action monitoring. Nature Neuroscience, 3, 516–520.PubMedCrossRefGoogle Scholar
  23. Goldman-Rakic, P. S., & Brown, R. M. (1981). Regional changes of monoamines in cerebral cortex and subcortical structures of aging rhesus monkeys. Neuroscience, 6, 177–187.PubMedCrossRefGoogle Scholar
  24. Gratton, G., Coles, M. G. H., Sirevaag, E. J., Eriksen, C. W., & Donchin, E. (1988). Pre- and poststimulus activation of response channels: A psychophysiological analysis. Journal of Experimental Psychology: Human Perception & Performance, 14, 331–344.CrossRefGoogle Scholar
  25. Holroyd, C. B., & Coles, M. G. H. (in press). The neural basis of human error processing: Reinforcement learning, dopamine, and the error-related negativity. Psychological Review.Google Scholar
  26. Holroyd, C. B., Dien, J., & Coles, M. G. H. (1998). Error-related scalp potentials elicited by hand and foot movements: Evidence for an outputindependent error-processing system in humans. Neuroscience Letters, 242, 65–68.PubMedCrossRefGoogle Scholar
  27. Holroyd, C., Praamstra, P., Plat, E., & Coles, M. G. H. (in press). Spared error-related potentials in mild to moderate Parkinson’s disease. Neuropsychologia.Google Scholar
  28. Holroyd, C., Reichler, J., & Coles, M. G. H. (1999, April 10–13). Is the error-related negativity generated by a dopaminergic error signal for reinforcement learning? Hypothesis and model [Abstract]. Cognitive Neuroscience Society 1999 annual meeting, Washington, DC.Google Scholar
  29. Holroyd, C. B., Yeung, N., Coles, M. G. H., & Cohen, J. D. (2002). A computational model of learning and error detection in the Eriksen Flankers Task. Manuscript in preparation.Google Scholar
  30. Kaasinen, V., Vilkman, H., Hietala, J., Nagren, K., Helenius, H., Olsson, H., Farde, L., & Rinne J. (2000). Age-related dopamine D2/D3 receptor loss in extrastriatal regions of the human brain. Neurobiology & Aging, 21, 683–688.CrossRefGoogle Scholar
  31. Kiehl, K. A., Liddle, P. F., & Hopfinger, J. B. (2000). Error processing and the rostral anterior cingulate: An event-related fMRI study. Psychophysiology, 37, 216–223.PubMedCrossRefGoogle Scholar
  32. Kok, A. (2000). Age-related changes in involuntary and voluntary attention as reflected in components of the event-related potentials (ERP). Biological Psychology, 54, 107–143.PubMedCrossRefGoogle Scholar
  33. Kopp, B., & Rist, F. (1999). An event-related brain potential substrate of disturbed response monitoring in paranoid schizophrenic patients. Journal of Abnormal Psychology, 108, 337–346.PubMedCrossRefGoogle Scholar
  34. Li, S. C., & Lindenberger, U. (1999). Cross-level unification: A computational exploration of the link between deterioration of neurotransmitter systems and dedifferentiation of cognitive abilities in old age. In L. G. Nilsson & H. J. Markowitsch (Eds.), Cognitive neuroscience of memory (pp. 103–146). Seattle: Hogrefe & Huber.Google Scholar
  35. Miltner, W. H. R., Braun, C. H., & Coles, M. G. H. (1997). Eventrelated brain potentials following incorrect feedback in a time-estimation task: Evidence for a generic neural system for error detection. Journal of Cognitive Neuroscience, 9, 788–798.CrossRefGoogle Scholar
  36. Moscovitch, M., & Winocur, G. (1995). Frontal lobes, memory, and aging. In J. Grafman, K. J. Holyoak, & F. Boller (Eds.), Structure and functions of the human prefrontal cortex (Annals of the New York Academy of Sciences, Vol. 769, pp. 119–151). New York: New York Academy of Sciences.Google Scholar
  37. Nieuwenhuis, S., Ridderinkhof, K. R., Blom, J., Band, G. P. H., & Kok, A. (2001). Error-related brain potentials are differentially related to awareness of response errors: Evidence from an antisaccade task. Psychophysiology, 38, 752–760.PubMedCrossRefGoogle Scholar
  38. Phillips, L. H., & Della Sala, S. (1996). Aging, intelligence, and anatomical segregation in the frontal lobes. Learning & Individual Differences, 10, 217–243.CrossRefGoogle Scholar
  39. Rabbitt, P. M. A. (1979). How old and young participants monitor and control responses for accuracy and speed. British Journal of Psychology, 70, 305–311.Google Scholar
  40. Raven, J. C., Court, J. H., & Raven, J. (1988). Manual for Raven’s progressive matrices and vocabulary scales: Sec. 3. Standard progressive matrices. London: Lewis.Google Scholar
  41. Scheffers, M. K., & Coles, M. G. H. (2000). Performance monitoring in a confusing world: Event-related brain activity, judgements of response accuracy, and types of errors. Journal of Experimental Psychology: Human Perception & Performance, 26, 141–151.CrossRefGoogle Scholar
  42. Scheffers, M. K., Coles, M. G. H., Bernstein, P., Gehring, W. J., & Donchin, E. (1996). Event-related brain potentials and error-related processing: An analysis of incorrect responses to go and no-go stimuli. Psychophysiology, 33, 42–53.PubMedCrossRefGoogle Scholar
  43. Sutton, R. S., & Barto, A. G. (1998). Reinforcement learning: An introduction. Cambridge, MA: MIT Press.Google Scholar
  44. Van der Molen, M. W., & Ridderinkhof, K. R. (1998). The growing and aging brain: Life-span changes in brain and cognitive functioning. In A. Demetriou, W. Doise, & C. F. M. van Lieshout (Eds.), Life-span developmental psychology: A European perspective (pp. 35–99). Chichester, U.K.: Wiley.Google Scholar
  45. Van der Veen, F. M., Nieuwenhuis, S., Van der Molen, M. W., Crone, E. A., & Jennings, J. R. (2001). Heart rate and error-related negativity reflect different aspects of feedback processing during probability learning. Manuscript in preparation.Google Scholar
  46. Volkow, N. D., Gur, R. C., Wang, G. J., Fowler, J. S., Moberg, P. J., Ding, Y. S., Hitzemann, R., Smith, G., & Logan, J. (1998). Association between decline in brain dopamine activity with age and cognitive and motor impairment in healthy individuals. American Journal of Psychiatry, 155, 344–349.PubMedGoogle Scholar
  47. Woestenburg, J. C., Verbaten, M. N., & Slangen J. L. (1983). The removal of the eye-movement artifact from the EEG by regression analysis in the frequency domain. Biological Psychology, 16, 127–147.PubMedCrossRefGoogle Scholar
  48. Yeung, N., Botvinick, M. M., & Cohen, J. D. (2001). The neural basis of error detection: Conflict monitoring and the error-related negativity. Manuscript submitted for publication.Google Scholar
  49. Zeef, E. J., & Kok, A. (1993). Age-related differences in the timing of stimulus and response processes during visual selective attention: Performance and psychophysiological analyses. Psychophysiology, 30, 138–151.PubMedCrossRefGoogle Scholar
  50. Zeef, E. J., Sonke, C. J., Kok, A., Buiten, M. M., & Kenemans, J. L. (1996). Perceptual factors affecting age-related differences in focused attention: Performance and psychophysiological analyses. Psychophysiology, 33, 555–565.PubMedCrossRefGoogle Scholar

Copyright information

© Psychonomic Society, Inc. 2002

Authors and Affiliations

  • Sander Nieuwenhuis
    • 1
    Email author
  • K. Richard Ridderinkhof
    • 1
  • Durk Talsma
    • 1
  • Michael G. H. Coles
    • 2
    • 3
  • Clay B. Holroyd
    • 4
  • Albert Kok
    • 1
  • Maurits W. van der Molen
    • 1
  1. 1.University of AmsterdamAmsterdamThe Netherlands
  2. 2.University of Illinois at Urbana-ChampaignChampaign
  3. 3.F. C. Donders Centre for Cognitive NeuroimagingNijmegenThe Netherlands
  4. 4.Department of PsychologyPrinceton UniversityPrinceton

Personalised recommendations