Cognitive, Affective, & Behavioral Neuroscience

, Volume 10, Issue 3, pp 339–348 | Cite as

Comparison of neural activity that leads to true memories, false memories, and forgetting: An fMRI study of the misinformation effect



False memories can occur when people are exposed to misinformation about a past event. Of interest here are the neural mechanisms of this type of memory failure. In the present study, participants viewed photographic vignettes of common activities during an original event phase (OEP), while we monitored their brain activity using fMRI. Later, in a misinformation phase, participants viewed sentences describing the studied photographs, some of which contained information conflicting with that depicted in the photographs. One day later, participants returned for a surprise item memory recognition test for the content of the photographs. Results showed reliable creation of false memories, in that participants reported information that had been presented in the verbal misinformation but not in the photographs. Several regions were more active during the OEP for later accurate memory than for forgetting, but they were also more active for later false memories, indicating that false memories in this paradigm are not simply caused by failure to encode the original event. There was greater activation in the ventral visual stream for subsequent true memories than for subsequent false memories, however, suggesting that differences in encoding may contribute to later susceptibility to misinformation.


  1. Bar, M., & Aminoff, E. (2003). Cortical analysis of visual context. Neuron, 38, 347–358. doi:10.1016/S0896-6273(03)00167-3PubMedCrossRefGoogle Scholar
  2. Bernstein, E. M., & Putnam, F. W. (1986). Development, reliability, and validity of a dissociation scale. Journal of Nervous & Mental Disease, 174, 727–735.CrossRefGoogle Scholar
  3. Brett, M., Anton, J. L., Valabregue, R., & Poline, J. B. (2002, June). Region of interest analysis using an SPM toolbox. Presented at the 8th International Conference on Functional Mapping of the Human Brain, Sendai, Japan.Google Scholar
  4. Brewer, J. B., Zhao, Z., Desmond, J. E., Glover, G. H., & Gabrieli, J. D. E. (1998). Making memories: Brain activity that predicts how well visual experience will be remembered. Science, 281, 1185–1187. doi:10.1126/science.281.5380.1185PubMedCrossRefGoogle Scholar
  5. Buckner, R. L., Andrews-Hanna, J. R., & Schacter, D. L. (2008). The brain’s default network: Anatomy, function, and relevance to disease. In A. Kingstone & M. B. Miller (Eds.), The year in cognitive neuroscience 2008 (Annals of the New York Academy of Sciences, Vol. 1124, pp. 1–38). doi:10.1196/annals.1440.011Google Scholar
  6. Cabeza, R., Rao, S. M., Wagner, A. D., Mayer, A. R., & Schacter, D. L. (2001). Can medial temporal lobe regions distinguish true from false? An event-related functional MRI study of veridical and illusory recognition memory. Proceedings of the National Academy of Sciences, 98, 4805–4810.CrossRefGoogle Scholar
  7. Cohen, N. J., & Eichenbaum, H. (1993). Memory, amnesia, and the hippocampal system. Cambridge, MA: MIT Press.Google Scholar
  8. Dale, A. M. (1999). Optimal experimental design for event-related fMRI. Human Brain Mapping, 8, 109–114.PubMedCrossRefGoogle Scholar
  9. Davachi, L., Mitchell, J. P., & Wagner, A. D. (2003). Multiple routes to memory: Distinct medial temporal lobe processes build item and source memories. Proceedings of the National Academy of Sciences, 100, 2157–2162. doi:10.1073/pnas.0337195100CrossRefGoogle Scholar
  10. Dobson, M., & Markham, R. (1993). Imagery ability and source monitoring: Implications for eyewitness memory. British Journal of Psychology, 84, 111–118.PubMedCrossRefGoogle Scholar
  11. Durso, F. T., & Johnson, M. K. (1980). The effects of orienting tasks on recognition, recall, and modality confusion of pictures and words. Journal of Verbal Learning & Verbal Behavior, 19, 416–429.CrossRefGoogle Scholar
  12. Eichenbaum, H., & Cohen, N. J. (2001). From conditioning to conscious recollection: Memory systems of the brain. New York: Oxford University Press.Google Scholar
  13. Eichenbaum, H., Yonelinas, A. P., & Ranganath, C. (2007). The medial temporal lobe and recognition memory. Annual Review of Neuroscience, 30, 123–152. doi:10.1146/annurev.neuro.30.051606.094328PubMedCrossRefGoogle Scholar
  14. Evans, A. C., Collins, D. L., Mills, S. R., Brown, E. D., Kelly, R. L., & Peters, T. M. (1993). 3D statistical neuroanatomical models from 305 MRI volumes. In L. A. Klaisner (Ed.), Proceedings of IEEE-Nuclear Science Symposium and Medical Imaging (pp. 1813–1817). Piscataway, NJ: IEEE Service Center.Google Scholar
  15. Garry, M., Manning, C. G., Loftus, E. F., & Sherman, S. J. (1996). Imagination inflation: Imagining a childhood event inflates confidence that it occurred. Psychonomic Bulletin & Review, 3, 208–214.CrossRefGoogle Scholar
  16. Goff, L. M., & Roediger, H. L. III, (1998). Imagination inflation for action events: Repeated imaginings lead to illusory recollections. Memory & Cognition, 26, 20–33.CrossRefGoogle Scholar
  17. Gonsalves, B. [D.], & Paller, K. A. (2000). Neural events that underlie remembering something that never happened. Nature Neuroscience, 3, 1316–1321. doi:10.1038/81851PubMedCrossRefGoogle Scholar
  18. Gonsalves, B. [D.], Reber, P. J., Gitelman, D. R., Parrish, T. B., Mesulam, M.-M., & Paller, K. A. (2004). Neural evidence that vivid imagining can lead to false remembering. Psychological Science, 15, 655–660. doi:10.1111/j.0956-7976.2004.00736.xPubMedCrossRefGoogle Scholar
  19. Hyman, I. E., Jr., & Billings, F. J. (1998). Individual differences and the creation of false childhood memories. Memory, 6, 1–20.PubMedCrossRefGoogle Scholar
  20. Hyman, I. E., Jr., & Pentland, J. (1996). The role of mental imagery in the creation of false childhood memories. Journal of Memory & Language, 35, 101–117.CrossRefGoogle Scholar
  21. Ishai, A., Ungerleider, L. G., & Haxby, J. V. (2000). Distributed neural systems for the generation of visual images. Neuron, 28, 979–990. doi:10.1016/S0896-6273(00)00168-9PubMedCrossRefGoogle Scholar
  22. Johnson, M. K., Foley, M. A., & Leach, K. (1988). The consequences for memory of imagining in another person’s voice. Memory & Cognition, 16, 337–342.CrossRefGoogle Scholar
  23. Johnson, M. K., & Raye, C. L. (1981). Reality monitoring. Psychology Review, 88, 67–85.CrossRefGoogle Scholar
  24. Kastner, S., De Weerd, P., Desimone, R., & Ungerleider, L. G. (1998). Mechanisms of directed attention in the human extrastriate cortex as revealed by functional MRI. Science, 282, 108–111. doi:10.1126/science.282.5386.108PubMedCrossRefGoogle Scholar
  25. Kensinger, E. A., & Schacter, D. L. (2005). Emotional content and reality-monitoring ability: fMRI evidence for the influences of encoding processes. Neuropsychologia, 43, 1429–1443. doi:10.1016/j.neuropsychologia.2005.01.004PubMedCrossRefGoogle Scholar
  26. Kosslyn, S. M., & Thompson, W. L. (1999). Shared mechanisms in visual imagery and visual perception: Insights from cognitive neuroscience. In M. S. Gazzaniga (Ed.), The new cognitive neurosciences (2nd ed.), (pp. 975–985). Cambridge, MA: MIT Press.Google Scholar
  27. Kumar, V. K., Pekala, R. J., & Gallagher, C. (1994). The Anomalous Experiences Inventory. Unpublished manuscript, West Chester University, Pennsylvania.Google Scholar
  28. Loftus, E. F. (2005). Planting misinformation in the human mind: A 30-year investigation of the malleability of memory. Learning & Memory, 12, 361–366. doi:10.1101/lm.94705CrossRefGoogle Scholar
  29. Loftus, E. F., Miller, D. G., & Burns, H. J. (1978). Semantic integration of verbal information into a visual memory. Journal of Experimental Psychology: Human Learning & Memory, 4, 19–31.CrossRefGoogle Scholar
  30. Loftus, E. F., Schooler, J. W., & Wagenaar, W. A. (1985). The fate of memory: Comment on McCloskey and Zaragoza. Journal of Experimental Psychology: General, 114, 375–380.CrossRefGoogle Scholar
  31. Marche, T. A. (1999). Memory strength affects reporting of misinformation. Journal of Experimental Child Psychology, 73, 45–71. doi:10.1006/jecp.1998.2489PubMedCrossRefGoogle Scholar
  32. Marks, D. F. (1973). Visual imagery differences in the recall of pictures. British Journal of Psychology, 64, 17–24.PubMedCrossRefGoogle Scholar
  33. Mather, M., Henkel, L. A., & Johnson, M. K. (1997). Evaluating characteristics of false memories: Remember/know judgments and memory characteristics questionnaire compared. Memory & Cognition, 25, 826–837.CrossRefGoogle Scholar
  34. McCloskey, M., & Zaragoza, M. (1985). Misleading postevent information and memory for events: Arguments and evidence against memory impairment hypotheses. Journal of Experimental Psychology: General, 114, 1–16.CrossRefGoogle Scholar
  35. Mitchell, K. J., & Johnson, M. K. (2000). Source monitoring: Attributing mental experiences. In E. Tulving & F. I. M. Craik (Eds.), The Oxford handbook of memory (pp. 179–195). New York: Oxford University Press.Google Scholar
  36. Mitchell, K. J., & Johnson, M. K. (2009). Source monitoring 15 years later: What have we learned from fMRI about the neural mechanisms of source memory? Psychological Bulletin, 135, 638–677. doi:10.1037/a0015849PubMedCrossRefGoogle Scholar
  37. Norman, K. A., & Schacter, D. L. (1997). False recognition in younger and older adults: Exploring the characteristics of illusory memories. Memory & Cognition, 25, 838–848.CrossRefGoogle Scholar
  38. Okado, Y., & Stark, C. [E. L.] (2003). Neural processing associated with true and false memory retrieval. Cognitive, Affective, & Behavioral Neuroscience, 3, 323–334.CrossRefGoogle Scholar
  39. Okado, Y., & Stark, C. E. L. (2005). Neural activity during encoding predicts false memories created by misinformation. Learning & Memory, 12, 3–11. doi:10.1101/lm.87605CrossRefGoogle Scholar
  40. Pezdek, K., & Roe, C. (1995). The effect of memory trace strength on suggestibility. Journal of Experimental Child Psychology, 60, 116–128. doi:10.1006/jecp.1995.1034CrossRefGoogle Scholar
  41. Powell, H. W. R., Koepp, M. J., Symms, M. R., Boulby, P. A., Salek-Haddadi, A., Thompson, P. J., et al. (2005). Material-specific lateralization of memory encoding in the medial temporal lobe: Blocked versus event-related design. NeuroImage, 27, 231–239. doi:10.1016/j.neuroimage.2005.04.033PubMedCrossRefGoogle Scholar
  42. Ranganath, C., Yonelinas, A. P., Cohen, M. X., Dy, C. J., Tom, S. M., & D’Esposito, M. (2004). Dissociable correlates of recollection and familiarity within the medial temporal lobes. Neuropsychologia, 42, 2–13. doi:10.1016/j.neuropsychologia.2003.07.006PubMedCrossRefGoogle Scholar
  43. Schacter, D. L. (1996). Searching for memory: The brain, the mind, and the past. New York: Basic Books.Google Scholar
  44. Schacter, D. L. (2001). The seven sins of memory: How the mind forgets and remembers. Boston: Houghton Mifflin.Google Scholar
  45. Schacter, D. L., Addis, D. R., & Buckner, R. L. (2007). Remembering the past to imagine the future: The prospective brain. Nature Reviews Neuroscience, 8, 657–661. doi:10.1038/nrn2213PubMedCrossRefGoogle Scholar
  46. Schacter, D. L., Reiman, E., Curran, T., Yun, L. S., Bandy, D., Mc-Dermott, K. B., & Roediger, H. L., III (1996). Neuroanatomical correlates of veridical and illusory recognition memory: Evidence from positron emission tomography. Neuron, 17, 267–274.PubMedCrossRefGoogle Scholar
  47. Schacter, D. L., & Slotnick, S. D. (2004). The cognitive neuroscience of memory distortion. Neuron, 44, 149–160. doi:10.1016/j.neuron.2004.08.017PubMedCrossRefGoogle Scholar
  48. Slotnick, S. D., & Schacter, D. L. (2004). A sensory signature that distinguishes true from false memories. Nature Neuroscience, 7, 664–672. doi:10.1038/nn1252PubMedCrossRefGoogle Scholar
  49. Stern, C. E., Corkin, S., González, R. G., Guimaraes, A. R., Baker, J. R., Jennings, P. J., et al. (1996). The hippocampal formation participates in novel picture encoding: Evidence from functional magnetic resonance imaging. Proceedings of the National Academy of Sciences, 93, 8660–8665.CrossRefGoogle Scholar
  50. Suchan, B., Yágüez, L., Wunderlich, G., Canavan, A. G. M., Herzog, H., Tellmann, L., et al. (2002). Neural correlates of visuospatial imagery. Behavioural Brain Research, 131, 163–168. doi:10.1016/ S0166-4328(01)00373-4PubMedCrossRefGoogle Scholar
  51. Sutherland, R., & Hayne, H. (2001). Age-related changes in the misinformation effect. Journal of Experimental Child Psychology, 79, 388–404.PubMedCrossRefGoogle Scholar
  52. Tzourio-Mazoyer, N., Landeau, B., Papathanassiou, D., Crivello, F., Etard, O., Delcroix, N., et al. (2002). Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. NeuroImage, 15, 273–289. doi:10.1006/nimg.2001.0978PubMedCrossRefGoogle Scholar
  53. Wagner, A. D., Poldrack, R. A., Eldridge, L. L., Desmond, J. E., Glover, G. H., & Gabrieli, J. D. E. (1998). Material-specific lateralization of prefrontal activation during episodic encoding and retrieval. NeuroReport, 9, 3711–3717.PubMedCrossRefGoogle Scholar
  54. Wixted, J. T. (2004). The psychology and neuroscience of forgetting. Annual Review of Psychology, 55, 235–269. doi:10.1146/annurev.psych.55.090902.141555PubMedCrossRefGoogle Scholar

Copyright information

© Psychonomic Society, Inc. 2010

Authors and Affiliations

  1. 1.University of Illinois at Urbana-ChampaignUrbana

Personalised recommendations