Behavior Research Methods

, Volume 42, Issue 3, pp 871–876 | Cite as

Estimating confidence intervals for eigenvalues in exploratory factor analysis

  • Ross LarsenEmail author
  • Russell T. Warne


Exploratory factor analysis (EFA) has become a common procedure in educational and psychological research. In the course of performing an EFA, researchers often base the decision of how many factors to retain on the eigenvalues for the factors. However, many researchers do not realize that eigenvalues, like all sample statistics, are subject to sampling error, which means that confidence intervals (CIs) can be estimated for each eigenvalue. In the present article, we demonstrate two methods of estimating CIs for eigenvalues: one based on the mathematical properties of the central limit theorem, and the other based on bootstrapping. References to appropriate SAS and SPSS syntax are included. Supplemental materials for this article may be downloaded from


Exploratory Factor Analysis Central Limit Theorem American Psychological Association Parallel Analysis Estimate Confidence Interval 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Supplementary material (12 kb)
Supplementary material, approximately 340 KB.


  1. American Psychological Association (2010). Publication manual of the American Psychological Association (6th ed.). Washington, DC: Author.Google Scholar
  2. Bain, L., & Engelhardt, M. (1992). Introduction to probability and mathematical statistics. Belmont, CA: Duxbury Press.Google Scholar
  3. Cattell, R. B. (1966). The scree test for the number of factors. Multivariate Behavioral Research, 1, 245–276. doi:10.1207/ s15327906mbr0102_10CrossRefGoogle Scholar
  4. Costello, A. B., & Osborne, J. W. (2005). Best practices in exploratory factor analysis: Four recommendations for getting the most from your analysis. Practical Assessment, Research & Evaluation, 10, 1–9.Google Scholar
  5. Cronbach, L. J. (1957). The two disciplines of scientific psychology. American Psychologist, 12, 671–684. doi:10.1037/h0043943CrossRefGoogle Scholar
  6. Cumming, G., & Finch, S. (2005). Inference by eye: Confidence intervals and how to read pictures of data. American Psychologist, 60, 170–180. doi:10.1037/0003-066X.60.2.170PubMedCrossRefGoogle Scholar
  7. Diaconis, P., & Efron, B. (1983). Computer-intensive methods in statistics. Scientific American, 248, 116–130.CrossRefGoogle Scholar
  8. Edgington, E. S. (1964). A tabulation of statistics used in psychology journals. American Psychologist, 19, 202–203. doi:10.1037/ h0039177CrossRefGoogle Scholar
  9. Edgington, E. S. (1974). A new tabulation of statistical procedures used in APA journals. American Psychologist, 29, 25–26. doi:10.1037/ h0035846CrossRefGoogle Scholar
  10. Elmore, P. B., & Woehlke, P. L. (1988). Statistical methods employed in American Educational Research Journal, Educational Researcher, and Review of Educational Research from 1978 to 1987. Educational Researcher, 17, 19–20.Google Scholar
  11. Fabrigar, L. R., Wegener, D. T., MacCallum, R. C., & Strahan, E. J. (1999). Evaluating the use of exploratory factor analysis in psychological research. Psychological Methods, 4, 272–299. doi:10.1037/1082-989X.4.3.272CrossRefGoogle Scholar
  12. Ford, J. K., MacCallum, R. C., & Tait, M. (1986). The application of exploratory factor analysis in applied psychology: A critical review and analysis. Personal Psychology, 39, 291–314. doi:10.1111/ j.1744-6570.1986.tb00583.xCrossRefGoogle Scholar
  13. Glorfeld, L. W. (1995). An improvement on Horn’s parallel analysis methodology for selecting the correct number of factors to retain. Educational & Psychological Measurement, 55, 377–393. doi:10.1177/0013164495055003002CrossRefGoogle Scholar
  14. Gorsuch, R. L. (1983). Factor analysis. Hillsdale, NJ: Erlbaum.Google Scholar
  15. Gorsuch, R. L. (2003). Factor analysis. In J. A. Schinka & W. F. Velicer (Eds.), Handbook of psychology: Vol. 2. Research methods in psychology (pp. 143–164). Hoboken, NJ: Wiley.Google Scholar
  16. Guttman, L. (1954). Some necessary conditions for common-factor analysis. Psychometrika, 19, 149–161. doi:10.1007/BF02289162CrossRefGoogle Scholar
  17. Hayton, J. C., Allen, D. G., & Scarpello, V. (2004). Factor retention decisions in exploratory factor analysis: A tutorial on parallel analysis. Organizational Research Methods, 7, 191–205. doi:10.1177/ 1094428104263675CrossRefGoogle Scholar
  18. Henson, R. K., & Roberts, J. K. (2006). Use of exploratory factor analysis in published research: Common errors and some comment on improved practice. Educational & Psychological Measurement, 66, 393–416. doi:10.1177/0013164405282485CrossRefGoogle Scholar
  19. Holzinger, K. J., & Swineford, F. (1939). A study in factor analysis: The stability of a bi-factor solution. Chicago: University of Chicago Press.Google Scholar
  20. Horn, J. L. (1965). A rationale and test for the number of factors in factor analysis. Psychometrika, 30, 179–185. doi:10.1007/BF02289447PubMedCrossRefGoogle Scholar
  21. Loehlin, J. C. (2004). Latent variable models (4th ed.). Mahwah, NJ: Erlbaum.Google Scholar
  22. Mardia, K., Kent, J., & Bibby, J. (1979). Multivariate analysis. New York: Academic Press.Google Scholar
  23. O’Connor, B. P. (2000). SPSS and SAS programs for determining the number of components using parallel analysis and Velicer’s MAP test. Behavior Research Methods, Instruments, & Computers, 32, 396–402.CrossRefGoogle Scholar
  24. Rencher, A., & Schimek, M. (1995). Methods of multivariate analysis. New York: Wiley.Google Scholar
  25. Rippe, D. D. (1953). Application of a large sampling criterion to some sampling problems in factor analysis. Psychometrika, 18, 191–205. doi:10.1007/BF02289056CrossRefGoogle Scholar
  26. Russell, D. W. (2002). In search of underlying dimensions: The use (and abuse) of factor analysis in Personality and Social Psychology Bulletin. Personality & Social Psychology Bulletin, 28, 1629–1646. doi:10.1177/014616702237645CrossRefGoogle Scholar
  27. Spearman, C. (1904). “General intelligence,” objectively determined and measured. American Journal of Psychology, 15, 201–293. doi:10.2307/1412107CrossRefGoogle Scholar
  28. Thompson, B. (2004). Exploratory and confirmatory factor analysis: Understanding concepts and applications. Washington, DC: American Psychological Association.CrossRefGoogle Scholar
  29. Thompson, B. (2006). Foundations of behavioral statistics: An insightbased approach. New York: Guilford.Google Scholar
  30. Tonsor, S. (2004). PCA bootstrap confidence intervals program [SAS code]. Retrieved from bootpca.html.Google Scholar
  31. Velicer, W. F. (1976). Determining the number of components from the matrix of partial correlations. Psychometrika, 41, 321–327. doi:10.1007/BF02293557CrossRefGoogle Scholar
  32. Wilkinson, L., & the Task Force on Statistical Inference (1999). Statistical methods in psychology journals: Guidelines and explanations. American Psychologist, 54, 594–604. doi:10.1037/0003-066X.54.8.594CrossRefGoogle Scholar
  33. Zientek, L. R., Capraro, M. M., & Capraro, R. M. (2008). Reporting practices in quantitative teacher education research: One look at the evidence cited in the AERA panel report. Educational Researcher, 37, 208–216. doi:10.3102/0013189X08319762CrossRefGoogle Scholar
  34. Zientek, L. R., & Thompson, B. (2007). Applying the bootstrap to the multivariate case: Bootstrap component/factor analysis. Behavior Research Methods, 39, 318–325.PubMedCrossRefGoogle Scholar
  35. Zwick, W. R., & Velicer, W. F. (1982). Factors influencing four rules of determining the number of components to retain. Multivariate Behavioral Research, 17, 253–269. doi:10.1207/s15327906mbr1702_5CrossRefGoogle Scholar
  36. Zwick, W. R., & Velicer, W. F. (1986). Comparison of five rules for determining the number of components to retain. Psychological Bulletin, 99, 432–442. doi:10.1037/0033-2909.99.3.432CrossRefGoogle Scholar

Copyright information

© Psychonomic Society, Inc. 2010

Authors and Affiliations

  1. 1.Department of Educational PsychologyTexas A&M University, TAMU 4225College Station

Personalised recommendations