Advertisement

Behavior Research Methods

, Volume 42, Issue 2, pp 525–541 | Cite as

Recreating Raven’s: Software for systematically generating large numbers of Raven-like matrix problems with normed properties

  • Laura E. Matzen
  • Zachary O. Benz
  • Kevin R. Dixon
  • Jamie Posey
  • James K. Kroger
  • Ann E. Speed
Articles

Abstract

Raven’s Progressive Matrices is a widely used test for assessing intelligence and reasoning ability (Raven, Court, & Raven, 1998). Since the test is nonverbal, it can be applied to many different populations and has been used all over the world (Court & Raven, 1995). However, relatively few matrices are in the sets developed by Raven, which limits their use in experiments requiring large numbers of stimuli. For the present study, we analyzed the types of relations that appear in Raven’s original Standard Progressive Matrices (SPMs) and created a software tool that can combine the same types of relations according to parameters chosen by the experimenter, to produce very large numbers of matrix problems with specific properties. We then conducted a norming study in which the matrices we generated were compared with the actual SPMs. This study showed that the generated matrices both covered and expanded on the range of problem difficulties provided by the SPMs.

Keywords

Average Accuracy Logic Problem Incorrect Answer Sandia National Laboratory Norming Study 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Arendasy, M., & Sommer, M. (2005). The effect of different types of perceptual manipulations on the dimensionality of automatically generated figural matrices. Intelligence, 33, 307–324. doi:10.1016/j.intell.2005.02.002CrossRefGoogle Scholar
  2. Carpenter, P. A., Just, M. A., & Shell, P. (1990). What one intelligence test measures: A theoretical account of the processing in the Raven Progressive Matrices Test. Psychological Review, 97, 404–431. doi:10.1037/0033-295X.97.3.404CrossRefPubMedGoogle Scholar
  3. Cattell, R. B. (1963). Theory of fluid and crystallized intelligence: A critical experiment. Journal of Educational Psychology, 54, 1–22. doi:10.1037/h0046743CrossRefGoogle Scholar
  4. Christoff, K., Prabhakaran, V., Dorfman, J., Zhao, Z., Kroger, J. K., Holyoak, K. J., & Gabrieli, J. D. E. (2001). Rostrolateral prefrontal cortex involvement in relational integration during reasoning. NeuroImage, 14, 1136–1149. doi:10.1006/nimg.2001.0922CrossRefPubMedGoogle Scholar
  5. Court, J. H., & Raven, J. (1995). Manual for Raven’s progressive matrices and vocabulary scales: Section 7, Research and references. San Antonio: Harcourt Assessment.Google Scholar
  6. Crone, E. A., Wendelken, C., van Leijenhorst, L., Honomichl, R. D., Christoff, K., & Bunge, S. A. (2009). Neurocognitive development of relational reasoning. Developmental Science, 12, 55–66. doi:10.1111/j.1467-7687.2008.00743.xCrossRefPubMedGoogle Scholar
  7. Green, K. E., & Kluever, R. C. (1992). Components of item difficulty of Raven’s matrices. Journal of General Psychology, 119, 189–199.CrossRefGoogle Scholar
  8. Halford, G. S., Wilson, W. H., & Phillips, S. (1998). Processing capacity defined by relational complexity: Implications for comparative, developmental, and cognitive psychology. Behavioral & Brain Sciences, 21, 803–831. doi:10.1017/S0140525X98001769Google Scholar
  9. Meo, M., Roberts, M. J., & Marucci, F. S. (2007). Element salience as a predictor of item difficulty for Raven’s Progressive Matrices. Intelligence, 35, 359–368. doi:10.1016/j.intell.2006.10.001CrossRefGoogle Scholar
  10. Primi, R. (2002). Complexity of geometric inductive reasoning tasks: Contribution to the understanding of fluid intelligence. Intelligence, 30, 41–70. doi:10.1016/S0160-2896(01)00067-8CrossRefGoogle Scholar
  11. Raven, J. C., Court, J. H., & Raven, J. (1998). Raven’s progressive matrices. Oxford: Oxford Psychologists Press.Google Scholar
  12. Roberts, M. J., Welfare, H., Livermore, D. P., & Theadom, A. M. (2000). Context, visual salience, and inductive reasoning. Thinking & Reasoning, 6, 349–374. doi:10.1080/135467800750038175CrossRefGoogle Scholar
  13. Waltz, J. A., Knowlton, B. J., Holyoak, K. J., Boone, K. B., Mishkin, F. S., de Menezes Santoa, M., et al. (1999). A system for relational reasoning in human prefrontal cortex. Psychological Science, 10, 119–125. doi:10.1111/1467-9280.00118CrossRefGoogle Scholar

Copyright information

© Psychonomic Society, Inc. 2010

Authors and Affiliations

  • Laura E. Matzen
    • 1
  • Zachary O. Benz
    • 1
  • Kevin R. Dixon
    • 1
  • Jamie Posey
    • 2
  • James K. Kroger
    • 2
  • Ann E. Speed
    • 1
  1. 1.Sandia National LaboratoriesAlbuquerque
  2. 2.New Mexico State UniversityLas Cruces

Personalised recommendations