Behavior Research Methods

, Volume 42, Issue 1, pp 55–73 | Cite as

CircE: An R implementation of Browne’s circular stochastic process model

Article
  • 618 Downloads

Abstract

In confirmatory analysis of whether data have a circumplex structure, Browne’s (1992) model has played a major role. However, implementation of this model requires a dedicated program, CIRCUM, because the analysis routine is not integrated in any of the most widely used statistical software packages. Hence, data entry and graphical representation of the results require the use of one or more additional programs. We propose a package for the R statistical environment, termed CircE, that can be used to enter or import data, implement Browne’s confirmatory analysis, and graphically represent the results. Using this new software, we put forward a new approach to assess the sustainability of theoretical models when the analysis is carried out at the level of questionnaire items. The CircE package (for either Mac OS X or Windows) and additional files may be downloaded from http://brm.psychonomic-journals.org/content/supplemental.

Supplementary material

Grassi-BRM-2010.zip (1.2 mb)
Supplementary material, approximately 340 KB.

References

  1. Anderson, T. W. (1960). Some stochastic process models for intelligence test scores. In K. J. Arrow, S. Karlin, & P. Suppes (Eds.), Mathematical methods in the social sciences, 1959 (pp. 205–220). Stanford: Stanford University Press.Google Scholar
  2. Block, J. (1957). Studies in the phenomenology of emotions. Journal of Abnormal & Social Psychology, 54, 358–363. doi:10.1037/h0040768CrossRefGoogle Scholar
  3. Bollen, K. A. (1989). Structural equations with latent variables. New York: Wiley.Google Scholar
  4. Browne, M. W. (1982). Covariance structures. In D. M. Hawkins (Ed.), Topics in applied multivariate analysis (pp. 72–141). Cambridge: Cambridge University Press.Google Scholar
  5. Browne, M. W. (1984). Asymptotically distribution-free methods for the analysis of covariance structures. British Journal of Mathematical & Statistical Psychology, 37, 62–83.Google Scholar
  6. Browne, M. W. (1992). Circumplex models for correlation matrices. Psychometrika, 57, 469–497. doi:10.1007/BF02294416CrossRefGoogle Scholar
  7. Browne, M. W., & Cudeck, R. (1992). Alternative ways of assessing model fit. Sociological Methods & Research, 21, 230–258.CrossRefGoogle Scholar
  8. Browne, M. W., & Du Toit, S. H. C. (1992). Automated fitting of nonstandard models. Multivariate Behavioral Research, 27, 269–300. doi:10.1207/s15327906mbr2702_13CrossRefGoogle Scholar
  9. Byrd, R. H., Lu, P., Nocedal, J., & Zhu, C. (1995). A limited memory algorithm for bound constrained optimization. SIAM Journal on Scientific Computing, 16, 1190–1208. doi:10.1137/0916069CrossRefGoogle Scholar
  10. Di Blas, L., Grassi, M., Luccio, R., & Momentè, S. (2008). How children rate children: Structural continuity of the circumplex model of interpersonal behavior in late childhood. Manuscript submitted for publication.Google Scholar
  11. Fabrigar, L. R., Visser, P. S., & Browne, M. W. (1997). Conceptual and methodological issues in testing the circumplex structure of data in personality and social psychology. Personality & Social Psychology Review, 1, 184–203. doi:10.1207/s15327957pspr0103_1CrossRefGoogle Scholar
  12. Fan, X., & Sivo, S. A. (2007). Sensitivity of fit indices to model misspecification and model types. Multivariate Behavioral Research, 42, 509–529.CrossRefGoogle Scholar
  13. Guttman, L. (1954). A new approach to factor analysis: The radex. In P. F. Lazarsfeld (Ed.), Mathematical thinking in the social sciences (pp. 258–348). Glencoe, IL: Free Press.Google Scholar
  14. Hu, L., & Bentler, P. M. (1999). Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Structural Equation Modeling, 6, 1–55.CrossRefGoogle Scholar
  15. Jöreskog, K. G. (1969). Efficient estimation in image factor analysis. Psychometrika, 34, 51–75. doi:10.1007/BF02290173CrossRefGoogle Scholar
  16. Liu, D. C., & Nocedal, J. (1989). On the limited memory BFGS method for large scale optimization. Mathematical Programming, 45, 503–528. doi:10.1007/BF01589116CrossRefGoogle Scholar
  17. MacCallum, R. C., Browne, M. W., & Sugawara, H. M. (1996). Power analysis and determination of sample size for covariance structure modeling. Psychological Methods, 1, 130–149. doi:10.1037/1082-989X.1.2.130CrossRefGoogle Scholar
  18. R Core Team Members, DebRoy, S., Bivand, R., et al. (2008). foreign: Read data stored by Minitab, S, SAS, SPSS, Stata, Systat, dBase, … (R package version 0.8-26). Vienna: R Foundation for Statistical Computing.Google Scholar
  19. R Development Core Team (2008). R: A language and environment for statistical computing (ISBN 3-900051-07-0). Vienna: R Foundation for Statistical Computing.Google Scholar
  20. Remington, N. A., Fabrigar, L. R., & Visser, P. S. (2000). Reexamining the circumplex model of affect. Journal of Personality & Social Psychology, 79, 286–300. doi:10.1037/0022-3514.79.2.286CrossRefGoogle Scholar
  21. Schumacker, R. E., & Lomax, R. G. (1996). A beginner’s guide to structural equation modeling. Mahwah, NJ: Erlbaum.Google Scholar
  22. Shapiro, A. (1985). Asymptotic distribution of test statistic in the analysis of moment structures under inequality constraints. Biometrika, 72, 133–144. doi:10.1093/biomet/72.1.133CrossRefGoogle Scholar
  23. Shapiro, A. (1989). Asymptotic properties of statistical estimators in stochastic programming. Annals of Statistics, 17, 841–858. Available at http://projecteuclid.org/euclid.aos/1176347146.CrossRefGoogle Scholar
  24. SPSS Inc. (1999). SPSS base 10.0 for Windows user’s guide. Chicago: Author.Google Scholar
  25. Steiger, J. H., & Lind, J. M. (1980, June). Statistically based tests for the number of common factors. Paper presented at the annual meeting of the Psychometric Society, Iowa City, IA.Google Scholar
  26. Wiggins, J. S. (1979). A psychological taxonomy of trait-descriptive terms: The interpersonal domain. Journal of Personality & Social Psychology, 37, 395–412. doi:10.1037/0022-3514.37.3.395CrossRefGoogle Scholar
  27. Wiggins, J. S., & Trapnell, P. D. (1996). A dyadic-interactional perspective on the five-factor model. In J. S. Wiggins (Ed.), The five-factor model of personality: Theoretical perspectives (pp. 88–162). New York: Guilford.Google Scholar
  28. Wothke, W. (1993). Nonpositive definite matrices in structural modeling. In K. A. Bollen & J. S. Long (Eds.), Testing structural equation models (pp. 256–293). Newbury Park, CA: Sage.Google Scholar
  29. Yung, Y.-F., & Bentler, P. M. (1994). Bootstrap-corrected ADF test statistics in covariance structure analysis. British Journal of Mathematical & Statistical Psychology, 47, 63–84.Google Scholar
  30. Zhu, C., Byrd, R., Lu, P., & Nocedal, J. (1994, December). L-BFGS-B: Fortran subroutines for large-scale bound constrained optimization (Rep. NAM-11). Evanston, IL: Northwestern University, EECS Department.Google Scholar

Copyright information

© Psychonomic Society, Inc. 2010

Authors and Affiliations

  • Michele Grassi
    • 1
  • Riccardo Luccio
    • 1
  • Lisa Di Blas
    • 1
  1. 1.Department of Psychology “G. Kanizsa,”University of TriesteTriesteItaly

Personalised recommendations