Advertisement

Behavior Research Methods

, Volume 40, Issue 4, pp 1030–1048 | Cite as

Exemplar by feature applicability matrices and other Dutch normative data for semantic concepts

  • Simon De Deyne
  • Steven Verheyen
  • Eef Ameel
  • Wolf Vanpaemel
  • Matthew J. Dry
  • Wouter Voorspoels
  • Gert Storms
Article
  • 608 Downloads

Abstract

Features are at the core of many empirical and modeling endeavors in the study of semantic concepts. This article is concerned with the delineation of features that are important in natural language concepts and the use of these features in the study of semantic concept representation. The results of a feature generation task in which the exemplars and labels of 15 semantic categories served as cues are described. The importance of the generated features was assessed by tallying the frequency with which they were generated and by obtaining judgments of their relevance. The generated attributes also featured in extensive exemplar by feature applicability matrices covering the 15 different categories, as well as two large semantic domains (that of animals and artifacts). For all exemplars of the 15 semantic categories, typicality ratings, goodness ratings, goodness rank order, generation frequency, exemplar associative strength, category associative strength, estimated age of acquisition, word frequency, familiarity ratings, imageability ratings, and pairwise similarity ratings are described as well. By making these data easily available to other researchers in the field, we hope to provide ample opportunities for continued investigations into the nature of semantic concept representation. These data may be downloaded from the Psychonomic Society’s Archive of Norms, Stimuli, and Data, www.psychonomic.org/archive.

Keywords

Word Frequency Semantic Category Semantic Concept Category Feature Category Label 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Supplementary material

DeDeyne-BRM-2008b.zip (6.2 mb)
Supplementary material, approximately 340 KB.

References

  1. Altarriba, J., Bauer, L. M., & Benvenuto, C. (1999). Concreteness, context availability, and imageability ratings and word associations for abstract, concrete, and emotion words. Behavior Research Methods, Instruments, & Computers, 31, 578–602.CrossRefGoogle Scholar
  2. Ameel, E., & Storms, G. (2006). From prototypes to caricatures: Geometrical models for concept typicality. Journal of Memory & Language, 55, 402–421.CrossRefGoogle Scholar
  3. Ashcraft, M. H. (1978). Property dominance and typicality effects in property statement verification. Journal of Verbal Learning & Verbal Behavior, 17, 155–164.CrossRefGoogle Scholar
  4. Baayen, R. H., Piepenbrock, R., & van Rijn, H. (1993). The CELEX lexical database [CD-ROM]. Philadelphia: University of Pennsylvania, Linguistic Data Consortium.Google Scholar
  5. Balota, D. A., & Chumbley, J. I. (1984). Are lexical decisions a good measure of lexical access? The role of word frequency in the neglected decision stage. Journal of Experimental Psychology: Human Perception & Performance, 10, 340–357.CrossRefGoogle Scholar
  6. Barsalou, L. W. (1983). Ad hoc categories. Memory & Cognition, 11, 211–227.CrossRefGoogle Scholar
  7. Barsalou, L. W. (1985). Ideals, central tendency, and frequency of instantiation as determinants of graded structure in categories. Journal of Experimental Psychology: Learning, Memory, & Cognition, 11, 629–649.CrossRefGoogle Scholar
  8. Barton, M. E., & Komatsu, L. K. (1989). Defining features of natural kinds and artifacts. Journal of Psycholinguistic Research, 18, 433–447.CrossRefGoogle Scholar
  9. Battig, W. F., & Montague, W. E. (1969). Category norms for verbal items in 56 categories: A replication and extension of the Connecticut category norms. Journal of Experimental Psychology Monographs, 80(3, Pt. 2), 1–46.CrossRefGoogle Scholar
  10. Borg, I., & Groenen, P. J. F. (2005). Modern multidimensional scaling. New York: Springer.Google Scholar
  11. Brysbaert, M., Van Wijnendaele, I., & De Deyne, S. (2000). Age-of-acquisition of words is a significant variable in semantic tasks. Acta Psychologica, 104, 215–226.PubMedCrossRefGoogle Scholar
  12. Burgess, C., & Lund, K. (1997). Modeling parsing constraints with high-dimensional context space. Language & Cognitive Processes, 12, 177–210.CrossRefGoogle Scholar
  13. Carroll, J. B., & White, M. N. (1973). Word frequency and age of acquisition as determiners of picture-naming latency. Quarterly Journal of Experimental Psychology, 25, 85–95.CrossRefGoogle Scholar
  14. Casey, P. J. (1992). A re-examination of the roles of typicality and category dominance in verifying category membership. Journal of Experimental Psychology: Learning, Memory, & Cognition, 18, 823–834.CrossRefGoogle Scholar
  15. Chumbley, J. I. (1986). The roles of typicality, instance dominance, and category dominance in verifying category membership. Journal of Experimental Psychology: Learning, Memory, & Cognition, 12, 257–267.CrossRefGoogle Scholar
  16. Cohen, B. H., Bousfield, W. A., & Whitmarsh, G. A. (1957). Cultural norms for verbal items in 43 categories (Tech. Rep. 22). Storrs: University of Connecticut.Google Scholar
  17. Collins, A. M., & Quillian, M. R. (1969). Retrieval time from semantic memory. Journal of Verbal Learning & Verbal Behavior, 8, 240–247.CrossRefGoogle Scholar
  18. Coltheart, M., Patterson, K., & Marshall, J. (1980). Deep dyslexia. London: Routledge & Kegan Paul.Google Scholar
  19. Cree, G. S., & McRae, K. (2003). Analyzing the factors underlying the structure and computation of the meaning of chipmunk, cherry, chisel, cheese, and cello (and many other such concrete nouns). Journal of Experimental Psychology: General, 132, 163–201.CrossRefGoogle Scholar
  20. Cree, G. S., McRae, K., & McNorgan, C. (1999). An attractor model of lexical conceptual processing: Simulating semantic priming. Cognitive Science, 23, 371–414.CrossRefGoogle Scholar
  21. De Deyne, S., & Storms, G. (2007). Age-of-acquisition differences in young and older adults affect latencies in lexical decision and semantic categorization. Acta Psychologica, 124, 274–295.PubMedCrossRefGoogle Scholar
  22. De Deyne, S., & Storms, G. (2008). Word associations: Norms for 1,424 Dutch words in a continuous task. Behavior Research Methods, 40, 198–205.PubMedCrossRefGoogle Scholar
  23. de Groot, A. M. B. (1989). Representational aspects of word imageability and word frequency as assessed through word association. Journal of Experimental Psychology: Learning, Memory, & Cognition, 15, 824–845.CrossRefGoogle Scholar
  24. Devlin, J. T., Gonnerman, L. M., Andersen, E. S., & Seidenberg, M. S. (1998). Category-specific semantic deficits in focal and widespread brain damage: A computational account. Journal of Cognitive Neuroscience, 10, 77–94.PubMedCrossRefGoogle Scholar
  25. Diesendruck, G., & Gelman, S. A. (1999). Domain differences in absolute judgments of category membership: Evidence for an essentialist account of categorization. Psychonomic Bulletin & Review, 6, 338–346.CrossRefGoogle Scholar
  26. Durrant-Peatfield, M. R., Tyler, L. K., Moss, H. E., & Levy, J. P. (1997). The distinctiveness of form and function in category structure: A connectionist model. In M. G. Shafto & P. Langley (Eds.), Proceedings of the 19th Annual Conference of the Cognitive Science Society (pp. 193–198). Mahwah, NJ: Erlbaum.Google Scholar
  27. Estes, Z. (2003). Domain differences in the structure of artifactual and natural categories. Memory & Cognition, 31, 199–214.CrossRefGoogle Scholar
  28. Fiebach, C. J., Friederici, A. D., Müller, K., von Cramon, D. Y., & Hernandez, A. E. (2003). Distinct brain representations for early and late learned words. NeuroImage, 19, 1627–1637.PubMedCrossRefGoogle Scholar
  29. Garrard, P., Lambon Ralph, M. A., Hodges, J. R., & Patterson, K. (2001). Prototypicality, distinctiveness, and intercorrelation: Analyses of the semantic attributes of living and nonliving concepts. Cognitive Neuropsychology, 18, 125–174.PubMedGoogle Scholar
  30. Gernsbacher, M. A. (1984). Resolving 20 years of inconsistent interactions between lexical familiarity and orthography, concreteness, and polysemy. Journal of Experimental Psychology: General, 113, 256–281.CrossRefGoogle Scholar
  31. Ghyselinck, M., Custers, R., & Brysbaert, M. (2003). Age-of-acquisition ratings for 2332 Dutch words from 49 different semantic categories. Psychologica Belgica, 43, 181–241.Google Scholar
  32. Gilhooly, K. J., & Logie, R. H. (1980). Age-of-acquisition, imagery, concreteness, familiarity, and ambiguity measures for 1,944 words. Behavior Research Methods & Instrumentation, 12, 395–427.CrossRefGoogle Scholar
  33. Goldstone, R., & Son, J. Y. (2005). Similarity. In K. Holyoak & R. Morrison (Eds.), Cambridge handbook of thinking and reasoning (pp. 13–36). Cambridge: Cambridge University Press.Google Scholar
  34. Greer, M. J., van Casteren, M., McLellan, S. A., Moss, H. E., Rodd, J., Rogers, T. T., & Tyler, L. K. (2001). The emergence of semantic categories from distributed featural representations. In J. D. Moore & K. Stenning (Eds.), Proceedings of the 23rd Annual Conference of the Cognitive Science Society (pp. 358–363). Mahwah, NJ: Erlbaum.Google Scholar
  35. Hahn, U., & Chater, N. (1997). Concepts and similarity. In K. Lamberts & D. Shanks (Eds.), Knowledge, concepts and categories (pp. 43–92). Hove, U.K.: Psychology Press.Google Scholar
  36. Hampton, J. A. (1979). Polymorphous concepts in semantic memory. Journal of Verbal Learning & Verbal Behavior, 18, 441–461.CrossRefGoogle Scholar
  37. Hampton, J. A. (1981). An investigation of the nature of abstract concepts. Memory & Cognition, 9, 149–156.CrossRefGoogle Scholar
  38. Hampton, J. A., Dubois, D., & Yeh, W. (2006). Effects of classification context on categorization in natural categories. Memory & Cognition, 34, 1431–1443.CrossRefGoogle Scholar
  39. Hampton, J. A., & Gardiner, M. M. (1983). Measures of internal category structure: A correlational analysis of normative data. British Journal of Psychology, 74, 491–516.CrossRefGoogle Scholar
  40. Henley, N. M. (1969). A psychological study of the semantics of animal terms. Journal of Verbal Learning & Verbal Behavior, 8, 176–184.CrossRefGoogle Scholar
  41. Holcomb, P. J., Kounios, J., Anderson, J. E., & West, W. C. (1999). Dual-coding, context-availability, and concreteness effects in sentence comprehension: An electrophysiological investigation. Journal of Experimental Psychology: Learning, Memory, & Cognition, 25, 721–742.CrossRefGoogle Scholar
  42. Humphreys, G. W., Riddoch, M. J., & Quinlan, P. T. (1988). Cascade processes in picture identification. Cognitive Neuropsychology, 5, 67–103.CrossRefGoogle Scholar
  43. Janczura, G. A., & Nelson, D. L. (1999). Concept accessibility as the determinant of typicality judgments. American Journal of Psychology, 112, 1–19.CrossRefGoogle Scholar
  44. Keil, F. (1989). Concepts, kinds, and cognitive development. Cambridge, MA: MIT Press.Google Scholar
  45. Kittur, A., Holyoak, K. J., & Hummel, J. E. (2006). Dissociating typicality and goodness judgments: Category-based differences [Abstract]. Abstracts of the Psychonomic Society 47th Annual Meeting, 11, 120.Google Scholar
  46. Kruskal, J. B., & Wish, M. (1978). Multidimensional scaling. Beverly Hills, CA: Sage.Google Scholar
  47. Landauer, T. K., & Dumais, S. T. (1997). A solution to Plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological Review, 104, 211–240.CrossRefGoogle Scholar
  48. Landauer, T. K., Ross, B. H., & Didner, R. S. (1979). Processing visually presented single words: A reaction time analysis [Tech. Memorandum]. Murray Hill, NJ: Bell Laboratories.Google Scholar
  49. Larochelle, S., & Pineau, H. (1994). Determinants of response times in the semantic verification task. Journal of Memory & Language, 33, 796–823.CrossRefGoogle Scholar
  50. Larochelle, S., Richard, S., & Soulières, I. (2000). What some effects might not be: The time to verify membership in “well-defined” categories. Quarterly Journal of Experimental Psychology, 53A, 929–961.CrossRefGoogle Scholar
  51. Lee, M. D., & Navarro, D. J. (2002). Extending the ALCOVE model of category learning to featural stimulus domains. Psychonomic Bulletin & Review, 9, 43–58.CrossRefGoogle Scholar
  52. Lorch, R. F. (1978). The role of two types of semantic information in the processing of false sentences. Journal of Verbal Learning & Verbal Behavior, 17, 523–537.CrossRefGoogle Scholar
  53. Malt, B. C., & Johnson, C. E. (1992). Do artifact concepts have cores? Journal of Memory & Language, 31, 195–217.CrossRefGoogle Scholar
  54. Malt, B. C., & Smith, E. E. (1984). Correlated properties in natural categories. Journal of Verbal Learning & Verbal Behavior, 23, 250–269.CrossRefGoogle Scholar
  55. Maridaki-Kassotaki, K. (1997). Are rating-based procedures reliable for derivation of typicality judgments from children? Behavior Research Methods, Instruments, & Computers, 29, 376–385.CrossRefGoogle Scholar
  56. Markman, A. B., & Gentner, D. (1993). Splitting the differences: A structural alignment view of similarity. Journal of Memory & Language, 32, 517–535.CrossRefGoogle Scholar
  57. Markman, A. B., & Wisniewski, E. J. (1997). Similar and different: The differentiation of basic level categories. Journal of Experimental Psychology: Learning, Memory, & Cognition, 23, 54–70.CrossRefGoogle Scholar
  58. Martin, R. C., & Caramazza, A. (1980). Classification in well-defined and ill-defined categories: Evidence for common processing strategies. Journal of Experimental Psychology: General, 109, 320–353.CrossRefGoogle Scholar
  59. McCloskey, M. [E.] (1980). The stimulus familiarity problem in semantic memory research. Journal of Verbal Learning & Verbal Behavior, 19, 485–502.CrossRefGoogle Scholar
  60. McCloskey, M. E., & Glucksberg, S. (1978). Natural categories: Well defined or fuzzy sets? Memory & Cognition, 6, 462–472.CrossRefGoogle Scholar
  61. McCloskey, M. E., & Glucksberg, S. (1979). Decision-processes in verifying category membership statements: Implications for models of semantic memory. Cognitive Psychology, 11, 1–37.CrossRefGoogle Scholar
  62. McRae, K., & Cree, G. S. (2002). Factors underlying category-specific semantic deficits. In E. M. E. Forde & G. Humphreys (Eds.), Category specificity in brain and mind (pp. 211–249). Hove, U.K.: Psychology Press.Google Scholar
  63. McRae, K., Cree, G. S., Seidenberg, M. S., & McNorgan, C. (2005). Semantic feature production norms for a large set of living and nonliving things. Behavior Research Methods, 37, 547–559.PubMedCrossRefGoogle Scholar
  64. McRae, K., de Sa, V. R., & Seidenberg, M. S. (1997). On the nature and scope of featural representations of word meaning. Journal of Experimental Psychology: General, 126, 99–130.CrossRefGoogle Scholar
  65. Medin, D. L., & Atran, S. (2004). The native mind: Biological categorization and reasoning in development and across cultures. Psychological Review, 111, 960–983.PubMedCrossRefGoogle Scholar
  66. Mervis, C. B., Catlin, J., & Rosch, E. (1976). Relationships among goodness-of-example, category norms, and word frequency. Bulletin of the Psychonomic Society, 7, 283–284.Google Scholar
  67. Mervis, C. B., & Rosch, E. (1981). Categorization of natural objects. Annual Review of Psychology, 32, 89–115.CrossRefGoogle Scholar
  68. Monaco, J. D., Abbott, L. F., & Kahana, M. J. (2007). Lexico-semantic structure and the word-frequency effect in recognition memory. Learning & Memory, 14, 204–213.CrossRefGoogle Scholar
  69. Monsell, S. (1991). The nature and locus of word frequency effects in reading. In D. Besner & G. W. Humphreys (Eds.), Basic processes in reading: Visual word recognition (pp. 148–197). Hillsdale, NJ: Erlbaum.Google Scholar
  70. Monsell, S., Doyle, M. C., & Haggard, P. N. (1989). Effects of frequency on visual word recognition tasks: Where are they? Journal of Experimental Psychology: General, 118, 43–71.CrossRefGoogle Scholar
  71. Morrison, C. M., & Ellis, A. W. (2000). Real age of acquisition effects in word naming and lexical decision. British Journal of Psychology, 91, 167–180.PubMedCrossRefGoogle Scholar
  72. Murphy, G. L. (1982). Cue validity and levels of categorization. Psychological Bulletin, 91, 174–177.CrossRefGoogle Scholar
  73. Paivio, A. U. (1971). Imagery and verbal processes. New York: Holt, Rinehart & Winston.Google Scholar
  74. Paivio, A. U. (1986). Mental representations: A dual coding approach. New York: Oxford University Press.Google Scholar
  75. Plaut, D. C., & Shallice, T. (1993). Deep dyslexia: A case study of connectionist neuropsychology. Cognitive Neuropsychology, 10, 377–500.CrossRefGoogle Scholar
  76. Pruzansky, S., Tversky, A., & Carroll, J. D. (1982). Spatial versus tree representations of proximity data. Psychometrika, 47, 3–24.CrossRefGoogle Scholar
  77. Quine, W. V. (1969). Ontological relativity and other essays. New York: Columbia University Press.Google Scholar
  78. Reilly, J., & Kean, J. (2007). Formal distinctiveness of high- and low imageability nouns: Analyses and theoretical implications. Cognitive Science, 31, 157–168.CrossRefPubMedGoogle Scholar
  79. Rips, L. J. (1975). Inductive judgments about natural categories. Journal of Verbal Learning & Verbal Behavior, 14, 665–681.CrossRefGoogle Scholar
  80. Rips, L. J. (1989). Similarity, typicality, and categorization. In S. Vosniadou & A. Ortony (Eds.), Similarity and analogical reasoning (pp. 21–59). New York: Cambridge University Press.CrossRefGoogle Scholar
  81. Rips, L. J., Shoben, E. J., & Smith, E. E. (1973). Semantic distance and the verification of semantic relations. Journal of Verbal Learning & Verbal Behavior, 12, 1–20.CrossRefGoogle Scholar
  82. Rogers, T. T., Lambon Ralph, M. A., Garrard, P., Bozeat, S., Mc-Clelland, J. L., Hodges, J. R., & Patterson, K. (2004). The structure and deterioration of semantic memory: A neuropsychological and computational investigation. Psychological Review, 111, 205–235.PubMedCrossRefGoogle Scholar
  83. Rogers, T. T., & McClelland, J. L. (2004). Semantic cognition: A parallel distributed processing approach. Cambridge, MA: MIT Press.Google Scholar
  84. Rosch, E. (1975). Cognitive representations of semantic categories. Journal of Experimental Psychology: General, 104, 192–233.CrossRefGoogle Scholar
  85. Rosch, E. (1977). Human categorization. In N. Warren (Ed.), Studies in cross-cultural psychology (Vol. 1, pp. 1–49). London: Academic Press.Google Scholar
  86. Rosch, E., & Mervis, C. B. (1975). Family resemblances: Studies in the internal structure of categories. Cognitive Psychology, 7, 573–605.CrossRefGoogle Scholar
  87. Rosch, E., Mervis, C. B., Grey, W. D., Johnson, D. M., & Boyes-Braem, P. (1976). Basic objects in natural categories. Cognitive Psychology, 8, 382–439.CrossRefGoogle Scholar
  88. Ruts, W., De Deyne, S., Ameel, E., Vanpaemel, W., Verbeemen, T., & Storms, G. (2004). Dutch norm data for 13 semantic categories and 338 exemplars. Behavior Research Methods, Instruments, & Computers, 36, 506–515.CrossRefGoogle Scholar
  89. Ruts, W., Storms, G., & Hampton, J. (2004). Linear separability in superordinate natural language concepts. Memory & Cognition, 32, 83–95.CrossRefGoogle Scholar
  90. Sattath, S., & Tversky, A. (1977). Additive similarity trees. Psychometrika, 42, 319–345.CrossRefGoogle Scholar
  91. Schwanenflugel, P. J., Akin, C., & Luh, W.-M. (1992). Context availability and the recall of abstract and concrete words. Memory & Cognition, 20, 96–104.CrossRefGoogle Scholar
  92. Shepard, R. N., & Arabie, P. (1979). Additive clustering: Representation of similarities as combinations of discrete overlapping properties. Psychological Review, 86, 87–123.CrossRefGoogle Scholar
  93. Shoben, E. J. (1976). The verification of semantic relations in a same-different paradigm: An asymmetry in semantic memory. Journal of Verbal Learning & Verbal Behavior, 15, 365–379.CrossRefGoogle Scholar
  94. Shoben, E. J. (1983). Applications of multidimensional scaling in cognitive psychology. Applied Psychological Measurement, 7, 473–490.CrossRefGoogle Scholar
  95. Sloman, S. A., Love, B. C., & Ahn, W. K. (1998). Feature centrality and conceptual coherence. Cognitive Science, 22, 189–228.CrossRefGoogle Scholar
  96. Smith, E. E., Shoben, E. J., & Rips, L. J. (1974). Structure and process in semantic memory: A featural model for semantic decisions. Psychological Review, 81, 214–241.CrossRefGoogle Scholar
  97. Smith, J. D., & Minda, J. P. (1998). Prototypes in the mist: The early epochs of category learning. Journal of Experimental Psychology: Learning, Memory, & Cognition, 24, 1411–1436.CrossRefGoogle Scholar
  98. Smits, T., Storms, G., Rosseel, Y., & De Boeck, P. (2002). Fruits and vegetables categorized: An application of the generalized context model. Psychonomic Bulletin & Review, 9, 836–844.CrossRefGoogle Scholar
  99. Steyvers, M., & Tenenbaum, J. (2005). The large-scale structure of semantic networks: Statistical analyses and a model of semantic growth. Cognitive Science, 29, 41–78.CrossRefPubMedGoogle Scholar
  100. Storms, G. (2001). Flemish category norms for exemplars of 39 categories: A replication of the Battig and Montague (1969) category norms. Psychologica Belgica, 41, 145–168.Google Scholar
  101. Storms, G., & De Boeck, P. (1997). Formal models for intracategorical structure that can be used for data-analysis. In K. Lamberts & D. Shanks (Eds.), Knowledge, concepts, and categories (pp. 439–459). London: UCL Press.Google Scholar
  102. Storms, G., De Boeck, P., & Ruts, W. (2000). Prototype and exemplar based information in natural language categories. Journal of Memory & Language, 42, 51–73.CrossRefGoogle Scholar
  103. Storms, G., De Boeck, P., Van Mechelen, I., & Geeraerts, D. (1993). Dominance and noncommutativity effects in concept conjunctions: Extensional or intensional basis? Memory & Cognition, 21, 752–762.CrossRefGoogle Scholar
  104. Storms, G., Dirikx, T., Saerens, J., Verstraeten, S., & De Deyn, P. P. (2003). On the use of scaling and clustering in the study of semantic disruptions. Neuropsychology, 17, 289–301.PubMedCrossRefGoogle Scholar
  105. Storms, G., Van Mechelen, I., & De Boeck, P. (1994). Structural analysis of the intension and extension of semantic concepts. European Journal of Cognitive Psychology, 6, 43–75.CrossRefGoogle Scholar
  106. Sutcliffe, J. P. (1993). Concepts, class, and category in the tradition of Aristotle. In I. Van Mechelen, J. A. Hampton, R. S. Michalski, & P. Theuns (Eds.), Categories and concepts: Theoretical views and inductive data analysis (pp. 35–65). London: Academic Press.Google Scholar
  107. Tenenbaum, J. B. (1996). Learning the structure of similarity. In D. S. Touretzky, M. C. Mozer, & M. E. Hasselmo (Eds.), Neural information processing systems (Vol. 8, pp. 3–9). Cambridge, MA: MIT Press.Google Scholar
  108. Tversky, B., & Hemenway, K. (1984). Objects, parts, and categories. Journal of Experimental Psychology: General, 113, 169–193.CrossRefGoogle Scholar
  109. Tyler, L. K., Moss, H. E., Durrant-Peatfield, M. R., & Levy, J. P. (2000). Conceptual structure and the structure of concepts: A distributed account of category-specific deficits. Brain & Language, 75, 195–231.CrossRefGoogle Scholar
  110. van Loon-Vervoorn, W. A. (1989). Eigenschappen van basiswoorden. Lisse, The Netherlands: Swets & Zeitlinger.Google Scholar
  111. Van Mechelen, I., Hampton, J. A., Michalski, R. S., & Theuns, P. (1993). Categories and concepts: Theoretical views and inductive data analysis. London: Academic Press.Google Scholar
  112. Vanoverberghe, V., & Storms, G. (2003). Feature importance in feature generation and typicality rating. European Journal of Cognitive Psychology, 15, 1–18.CrossRefGoogle Scholar
  113. Verbeemen, T., Vanpaemel, W., Pattyn, S., Storms, G., & Verguts, T. (2007). Beyond exemplars and prototypes as memory representations of natural concepts: A clustering approach. Journal of Memory & Language, 56, 537–554.CrossRefGoogle Scholar
  114. Verheyen, S., Ameel, E., & Storms, G. (2007). Determining the dimensionality in spatial representations of semantic concepts. Behavior Research Methods, 39, 427–438.PubMedCrossRefGoogle Scholar
  115. Warrington, E. K., & Shallice, T. (1984). Category specific semantic impairments. Brain, 107, 829–854.PubMedCrossRefGoogle Scholar
  116. Zannino, G. D., Perri, R., Pasqualetti, P., Caltagirone, C., & Carlesimo, G. A. (2006). Analysis of the semantic representations of living and nonliving concepts: A normative study. Cognitive Neuropsychology, 23, 515–540.PubMedCrossRefGoogle Scholar
  117. Zannino, G. D., Perri, R., Pasqualetti, P., Di Paola, M., Caltagirone, C., & Carlesimo, G. A. (2006). The role of semantic distance in category-specific impairments for living things: Evidence from a case of semantic dementia. Neuropsychologia, 44, 1017–1028.PubMedCrossRefGoogle Scholar

Copyright information

© Psychonomic Society, Inc. 2008

Authors and Affiliations

  • Simon De Deyne
    • 1
  • Steven Verheyen
    • 1
  • Eef Ameel
    • 1
  • Wolf Vanpaemel
    • 1
  • Matthew J. Dry
    • 1
  • Wouter Voorspoels
    • 1
  • Gert Storms
    • 1
  1. 1.Department of PsychologyUniversity of LeuvenLeuvenBelgium

Personalised recommendations