Behavior Research Methods

, Volume 40, Issue 3, pp 879–891 | Cite as

Asymptotic and resampling strategies for assessing and comparing indirect effects in multiple mediator models



Hypotheses involving mediation are common in the behavioral sciences. Mediation exists when a predictor affects a dependent variable indirectly through at least one intervening variable, or mediator. Methods to assess mediation involving multiple simultaneous mediators have received little attention in the methodological literature despite a clear need. We provide an overview of simple and multiple mediation and explore three approaches that can be used to investigate indirect processes, as well as methods for contrasting two or more mediators within a single model. We present an illustrative example, assessing and contrasting potential mediators of the relationship between the helpfulness of socialization agents and job satisfaction. We also provide SAS and SPSS macros, as well as Mplus and LISREL syntax, to facilitate the use of these methods in applications.


Indirect Effect Structural Equation Modeling Residual Covariance Total Indirect Effect Multiple Mediator Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Aiken, L. S., West, S. G., Woodward, C. K., Reno, R. R., & Reynolds, K. D. (1994). Increasing screening mammography in asymptomatic women: Evaluation of a second-generation theory-based program. Health Psychology, 13, 526–538.CrossRefPubMedGoogle Scholar
  2. Arbuckle, J. L. (1999). AMOS 4 [Computer software]. Chicago: Small-Waters Corp.Google Scholar
  3. Aroian, L. A. (1947). The probability function of the product of two normally distributed variables. Annals of Mathematical Statistics, 18, 265–271.CrossRefGoogle Scholar
  4. Assad, K. K., Donnellan, M. B., & Conger, R. D. (2007). Optimism: An enduring resource for romantic relationships. Journal of Personality & Social Psychology, 93, 285–297.CrossRefGoogle Scholar
  5. Azen, R. (2003, August). Multiple mediator models: A comparison of testing approaches. Poster presented at the 111th Annual Convention of the American Psychological Association, Toronto, Ontario.Google Scholar
  6. Baron, R. M., & Kenny, D. A. (1986). The moderator-mediator variable distinction in social psychological research: Conceptual, strategic, and statistical considerations. Journal of Personality & Social Psychology, 51, 1173–1182.CrossRefGoogle Scholar
  7. Bishop, Y. M., Fienberg, S. E., & Holland, P. W. (1975). Discrete multivariate analysis: Theory and practice. Cambridge, MA: MIT Press.Google Scholar
  8. Bollen, K. A. (1987). Total, direct, and indirect effects in structural equation models. Sociological Methodology, 17, 37–69.CrossRefGoogle Scholar
  9. Bollen, K. A. (1989). Structural equations with latent variables. New York: Wiley.Google Scholar
  10. Bollen, K. A., & Stine, R. (1990). Direct and indirect effects: Classical and bootstrap estimates of variability. Sociological Methodology, 20, 115–140.CrossRefGoogle Scholar
  11. Briggs, N. (2006). Estimation of the standard error and confidence interval of the indirect effect in multiple mediator models. Dissertation Abstracts International, 37, 4755B.Google Scholar
  12. Brown, R. L. (1997). Assessing specific mediational effects in complex theoretical models. Structural Equation Modeling, 4, 142–156.CrossRefGoogle Scholar
  13. Carson, J. W., Carson, K. M., Gil, K. M., & Baucom, D. H. (2007). Self-expansion as a mediator of relationship improvements in a mindfulness intervention. Journal of Marital & Family Therapy, 33, 517–528.CrossRefGoogle Scholar
  14. Chao, G. T., O’Leary-Kelly, A. M., Wolf, S., Klein, H. J., & Gardner, P. D. (1994). Organizational socialization: Its content and consequences. Journal of Applied Psychology, 79, 730–743.CrossRefGoogle Scholar
  15. Cheung, M. W.-L. (2007). Comparison of approaches to constructing confidence intervals for mediating effects using structural equation models. Structural Equation Modeling, 14, 227–246.Google Scholar
  16. Cohen, J., Cohen, P., West, S. G., & Aiken, L. S. (2003). Applied multiple regression/correlation analysis for the behavioral sciences (3rd ed.). Mahwah, NJ: Erlbaum.Google Scholar
  17. Cole, D. A., & Maxwell, S. E. (2003). Testing mediational models with longitudinal data: Questions and tips in the use of structural equation modeling. Journal of Abnormal Psychology, 112, 558–577.CrossRefPubMedGoogle Scholar
  18. Collins, L. M., Graham, J. W., & Flaherty, B. P. (1998). An alternative framework for defining mediation. Multivariate Behavioral Research, 33, 295–312.CrossRefGoogle Scholar
  19. Constantine, M. G. (2007). Racial microaggressions against African American clients in cross-racial counseling relationships. Journal of Counseling Psychology, 54, 1–16.CrossRefGoogle Scholar
  20. Craig, C. C. (1936). On the frequency function of xy. The Annals of Mathematical Statistics, 7, 1–15.CrossRefGoogle Scholar
  21. de Zavala, A. G., & Van Bergh, A. (2007). Need for cognitive closure and conservative political beliefs: Differential mediation by personal worldviews. Political Psychology, 28, 587–608.CrossRefGoogle Scholar
  22. Efron, B. (1987). Better bootstrap confidence intervals. Journal of the American Statistical Association, 82, 171–185.CrossRefGoogle Scholar
  23. Efron, B., & Tibshirani, R. J. (1993). An introduction to the bootstrap. Boca Raton, FL: Chapman & Hall.Google Scholar
  24. Fox, J. (1985). Effects analysis in structural equation models II: Calculation of specific indirect effects. Sociological Methods & Research, 14, 81–95.CrossRefGoogle Scholar
  25. Gudmundsdottir, B., Beck, J. G., Coffey, S. F., Miller, L., & Palyo, S. A. (2004). Quality of life and post trauma symptomatology in motor vehicle accident survivors: The mediating effects of depression and anxiety. Depression & Anxiety, 20, 187–189.CrossRefPubMedGoogle Scholar
  26. Holbert, R. L., Shah, D. V., & Kwak, N. (2003). Political implications of prime-time drama and sitcom use: Genres of representation and opinions concerning women’s rights. Journal of Communication, 53, 45–60.CrossRefGoogle Scholar
  27. Holbert, R. L., & Stephenson, M. T. (2003). The importance of indirect effects in media effects research: Testing for mediation in structural equation modeling. Journal of Broadcasting & Electronic Media, 47, 556–572.CrossRefGoogle Scholar
  28. Judd, C. M., & Kenny, D. A. (1981). Process analysis: Estimating mediation in treatment evaluations. Evaluation Review, 5, 602–619.CrossRefGoogle Scholar
  29. Kalyanaraman, S., & Sundar, S. S. (2006). The psychological appeal of personalized content in web portals: Does customization affect attitudes and behavior? Journal of Communication, 56, 110–132.CrossRefGoogle Scholar
  30. Kenny, D. A., Kashy, D. A., & Bolger, N. (1998). Data analysis in social psychology. In D. Gilbert, S. T. Fiske, & G. Lindzey (Eds.), Handbook of social psychology (4th ed., Vol. 1, pp. 233–265). New York: McGraw-Hill.Google Scholar
  31. Klein, H. J., Fan, J., & Preacher, K. J. (2006). The effects of early socialization experiences on content mastery and outcomes: A mediational approach. Journal of Vocational Behavior, 68, 96–115.CrossRefGoogle Scholar
  32. Lockwood, C. M., & MacKinnon, D. P. (1998). Bootstrapping the standard error of the mediated effect. Proceedings of the 23rd Annual Meeting of SAS Users Group International (pp. 997–1002). Cary, NC: SAS Institute, Inc.Google Scholar
  33. MacKinnon, D. P. (1994). Analysis of mediating variables in prevention and intervention research. In A. Cázares & L. Beatty (Eds.), Scientific methods for prevention intervention research (NIDA Monograph No. 139, pp. 127–153). Rockville, MD: National Institute on Drug Abuse.Google Scholar
  34. MacKinnon, D. P. (2000). Contrasts in multiple mediator models. In J. Rose, L. Chassin, C. C. Presson, & S. J. Sherman (Eds.), Multivariate applications in substance use research: New methods for new questions (pp. 141–160). Mahwah, NJ: Erlbaum.Google Scholar
  35. MacKinnon, D. P., & Dwyer, J. H. (1993). Estimating mediated effects in prevention studies. Evaluation Review, 17, 144–158.CrossRefGoogle Scholar
  36. MacKinnon, D. P., Fritz, M. S., Williams, J., & Lockwood, C. M. (2007). Distribution of the product confidence limits for the indirect effect: Program PRODCLIN. Behavior Research Methods, 39, 384–389.CrossRefPubMedGoogle Scholar
  37. MacKinnon, D. P., Krull, J. L., & Lockwood, C. M. (2000). Equivalence of the mediation, confounding, and suppression effect. Prevention Science, 1, 173–181.CrossRefPubMedGoogle Scholar
  38. Mackinnon, D. P., Lockwood, C. M., Hoffman, J. M., West, S. G., & Sheets, V. (2002). A comparison of methods to test mediation and other intervening variable effects. Psychological Methods, 7, 83–104.CrossRefPubMedGoogle Scholar
  39. Mackinnon, D. P., Lockwood, C. M., & Williams, J. (2004). Confidence limits for the indirect effect: Distribution of the product and resampling methods. Multivariate Behavioral Research, 39, 99–128.CrossRefPubMedGoogle Scholar
  40. Morgeson, F. P., Delaney-Klinger, K., & Hemingway, M. A. (2005). The importance of job autonomy, cognitive ability, and job-related skill for predicting role breadth and job performance. Journal of Applied Psychology, 90, 399–406.CrossRefPubMedGoogle Scholar
  41. Muthén, L. K., & Muthén, B. O. (2007). Mplus user’s guide (5th ed.). Los Angeles: Muthén & Muthén.Google Scholar
  42. Neale, M. C., Boker, S. M., Xie, G., & Maes, H. H. (2003). Mx: Statistical modeling (6th ed.). Richmond, VA: Department of Psychiatry, Virginia Commonwealth University.Google Scholar
  43. Preacher, K. J., & Hayes, A. F. (2004). SPSS and SAS procedures for estimating indirect effects in simple mediation models. Behavior Research Methods, Instruments, & Computers, 36, 717–731.CrossRefGoogle Scholar
  44. Preacher, K. J., & Hayes, A. F. (2008). Contemporary approaches to assessing mediation in communication research. In A. F. Hayes, M. D. Slater, & L. B. Snyder (Eds.), The Sage sourcebook of advanced data analysis methods for communication research (pp. 13–54). Thousand Oaks, CA: Sage.Google Scholar
  45. Preacher, K. J., Rucker, D. D., & Hayes, A. F. (2007). Assessing moderated mediation hypotheses: Theory, methods, and prescriptions. Multivariate Behavioral Research, 42, 185–227.Google Scholar
  46. Raver, J. L., & Gelfand, M. J. (2005). Beyond the individual victim: Linking sexual harassment, team processes, and team performance. Academy of Management Journal, 48, 387–400.Google Scholar
  47. Reynolds, K. D., Bishop, D. B., Chou, C.-P., Xie, B., Nebeling, L., & Perry, C. L. (2004). Contrasting mediating variables in two 5-a-day nutrition intervention programs. Preventive Medicine, 39, 882–893.CrossRefPubMedGoogle Scholar
  48. Rutter, A., & Hine, D. W. (2005). Sex differences in workplace aggression: An investigation of moderation and mediation effects. Aggressive Behavior, 31, 254–270.CrossRefGoogle Scholar
  49. Shrout, P. E., & Bolger, N. (2002). Mediation in experimental and nonexperimental studies: New procedures and recommendations. Psychological Methods, 7, 422–445.CrossRefPubMedGoogle Scholar
  50. SOBEL, M. E. (1982). Asymptotic confidence intervals for indirect effects in structural equations models. In S. Leinhart (Ed.), Sociological methodology 1982 (pp. 290–312). San Francisco: Jossey-Bass.Google Scholar
  51. Sobel, M. E. (1986). Some new results on indirect effects and their standard errors in covariance structure models. In N. Tuma (Ed.), Sociological Methodology 1986 (pp. 159–186). Washington, DC: American Sociological Association.Google Scholar
  52. Springer, M. D. (1979). The algebra of random variables. New York: Wiley.Google Scholar
  53. Taylor, A. B., Mackinnon, D. P., & Tein, J.-Y. (2008). Tests of the three-path mediated effect. Organizational Research Methods, 11, 241–269.CrossRefGoogle Scholar
  54. West, S. G., & Aiken, L. S. (1997). Toward understanding individual effects in multicomponent prevention programs: Design and analysis strategies. In K. J. Bryant, M. Windle, & S. G. West (Eds.), The science of prevention: Methodological advances from alcohol and substance abuse research (pp. 167–209). Washington, DC: American Psychological Association.CrossRefGoogle Scholar
  55. Williams, J. (2004). Resampling and distribution of the product methods for testing indirect effects in complex models. Unpublished doctoral dissertation, Arizona State University, Tempe, AZ.Google Scholar
  56. Williams, J., & MacKinnon, D. P. (2008). Resampling and distribution of the product methods for testing indirect effects in complex models. Structural Equation Modeling, 15, 23–51.PubMedGoogle Scholar

Copyright information

© Psychonomic Society, Inc. 2008

Authors and Affiliations

  1. 1.Department of PsychologyUniversity of KansasLawrence
  2. 2.Ohio State UniversityColumbus

Personalised recommendations