Advertisement

Psychobiology

, Volume 28, Issue 2, pp 207–218 | Cite as

The role of the prefrontal cortex in dynamic filtering

  • Arthur P. Shimamura
Article
  • 1.2k Downloads

Abstract

Functional neuroimaging and neuropsychological methods have broadened our understanding of the human prefrontal cortex. Converging evidence suggests that this brain region contributes to executive control of information processing. Both cognitive and neural-based models have attempted to delineate the manner in which the prefrontal cortex mediates executive control. An analysis of these findings and models suggests four prominent aspects of executive control—selecting, maintaining, updating, and rerouting information processing. These four aspects are couched in terms of dynamic filtering theory, which proposes that the prefrontal cortex acts as a selective gating or filtering mechanism that controls information processing.

Keywords

Prefrontal Cortex Frontal Lobe Executive Control Span Task Source Memory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Allport, D. A., Styles, E. A., & Hsieh, S. (1994). Shifting intentional set: Exploring the dynamic control of tasks. In C. Umiltà & M. Moscovitch (Eds.), Attention and performance XV: Conscious and non-conscious information processing (pp. 421–452). Cambridge, MA: MIT Press.Google Scholar
  2. Awh, E., Jonides, J., Smith, E. E., Schumacher, E. H., & Koeppe, R. A. (1996). Dissociation of storage and rehearsal in verbal working memory: Evidence from positron emission tomography. Psychological Science, 7, 25–31.CrossRefGoogle Scholar
  3. Baddeley, A. (1986). Working memory. Oxford: Oxford University Press.Google Scholar
  4. Baldo, J. V., & Shimamura, A. P. (1995, April). Performance of frontal lobe patients on Stroop-like tasks. Paper presented at the annual meeting of the Cognitive Neuroscience Society, San Francisco.Google Scholar
  5. Baldo, J. V., & Shimamura, A. P. (1998). Letter and category fluency in patients with frontal lobe lesions. Neuropsychology, 12, 259–267.PubMedCrossRefGoogle Scholar
  6. Baldo, J. V., & Shimamura, A. P. (2000). Spatial and color working memory in patients with lateral prefrontal cortex lesions. Psychobiology, 28, 156–167.Google Scholar
  7. Bench, C. J., Frith, C. D., Grasby, P. M., & Friston, K. J. (1993). Investigations of the functional anatomy of attention using the Stroop test. Neuropsychologia, 31, 907–922.PubMedCrossRefGoogle Scholar
  8. Benton, A., & deHamsher, K. (1976). Multilingual aphasia examination. Iowa City: University of Iowa Press.Google Scholar
  9. Bonin, G., & Baily, P. (1947). The neocortex of the Macaca mulatto. Urbana: University of Illinois Press.Google Scholar
  10. Botvinick, M., Nystrom, E., Fissell, K., & Carter, C. S. (1999). Conflict monitoring versus selection-for-action in anterior cingulate cortex. Nature, 402, 179–181.PubMedCrossRefGoogle Scholar
  11. Brewer, J. B., Zhao, Z., Desmond, J. E., Glover, G. H., & Gabrieli, J. D. E. (1998). Making memories: Brain activity that predicts how well visual experience will be remembered. Science, 281, 1185–1187.PubMedCrossRefGoogle Scholar
  12. Buckner, R. L. (1996). Beyond HERA: Contributions of specific prefrontal brain areas to long-term memory retrieval. Psychonomic Bulletin & Review, 3, 149–158.CrossRefGoogle Scholar
  13. Carlson, S., Martinkauppi, S., Raemae, P., & Salli, E. (1998). Distribution of cortical activation during visuospatial n-back tasks as revealed by functional magnetic resonance imaging. Cerebral Cortex, 8, 743–752.PubMedCrossRefGoogle Scholar
  14. Chao, L. L., & Knight, R. T. (1996). Prefrontal and posterior cortical activation during auditory working memory. Cognitive Brain Research, 4, 27–37.PubMedCrossRefGoogle Scholar
  15. Cohen, J. D., Perlstein, W. M., Braver, T. S., & Nystrom, L. E. (1997). Temporal dynamics of brain activation during a working memory task. Nature, 386, 604–608.PubMedCrossRefGoogle Scholar
  16. Cohen, J. D., & Servan-Schreiber, D. (1992). Context, cortex, and dopamine: A connectionist approach to behavior and biology in schizophrenia. Psychological Review, 99, 45–77.PubMedCrossRefGoogle Scholar
  17. Damasio, A. (1995). On some functions of the human prefrontal cortex. In J. Grafman, K. J. Holyoak, & F. Boller (Eds.), Structure and function of the human prefrontal cortex (Annals of the New York Academy of Sciences, Vol. 769, pp. 241–251). New York: New York Academy of Sciences.Google Scholar
  18. Delis, D. C., Squire, L. R., Bihrle, A., & Massman, P. (1992). Componential analysis of problem-solving ability: Performance of patients with frontal lobe damage and amnesic patients on a new sorting test. Neuropsychologia, 30, 683–697.PubMedCrossRefGoogle Scholar
  19. Demb, J. B., Desmond, J. E., Wagner, A. D., Vaidya, C. J., Glover, G. H., & Gabrieli, J. D. E. (1995). Semantic encoding and retrieval in the left inferior prefrontal cortex: A functional MRI study of task difficulty and process specificity. Journal of Neuroscience, 15, 5870–5878.PubMedGoogle Scholar
  20. Desimone, R., & Duncan, J. (1995). Neural mechanisms of selective visual attention. Annual Review of Neuroscience, 18, 193–222.PubMedCrossRefGoogle Scholar
  21. D’Esposito, M., Aguirre, G. K., Zarahn, E., & Ballard, D. (1998). Functional MRI studies of spatial and nonspatial working memory. Cognitive Brain Research, 7, 1–13.PubMedCrossRefGoogle Scholar
  22. D’Esposito, M., Detre, J. A., Alsop, D. C., & Shin, R. K. (1995). The neural basis of the central executive system of working memory. Nature, 1378, 279–281.CrossRefGoogle Scholar
  23. D’Esposito, M., & Postle, B. R. (1999). The dependence of span and delayed-response performance on prefrontal cortex. Neuropsychologia, 37, 1303–1315.PubMedCrossRefGoogle Scholar
  24. D’Esposito, M., & Postle, B. R. (in press). Neural correlates of component processes of working memory: Evidence from neuropsychological and pharmocological studies. In S. Monsell & J. Driver (Eds.), Attention and performance XVIII: Control of cognitive processes. Cambridge, MA: MIT Press.Google Scholar
  25. Dias, R., Robbins, T. W., & Roberts, A. C. (1996). Dissociation in prefrontal cortex of affective and attentional shifts. Nature, 380, 69–72.PubMedCrossRefGoogle Scholar
  26. Dolan, R. J., & Fletcher, P. C. (1997). Dissociating prefrontal and hippocampal function in episodic memory encoding. Nature, 388, 582–585.PubMedCrossRefGoogle Scholar
  27. Dunbar, K., & Sussman, D. (1995). Toward a cognitive account of frontal lobe function: Simulating frontal lobe deficits in normal subjects. In J. Grafman, K. J. Holyoak, & F. Boller (Eds.), Structure and functions of the human prefrontal cortex (Annals of the New York Academy of Sciences, Vol. 769, pp. 289–304). New York: New York Academy of Sciences.Google Scholar
  28. Duncan, J., Emslie, H., Williams, P., & Johnson, R. (1996). Intelligence and the frontal lobe: The organization of goal-directed behavior. Cognitive Psychology, 30, 257–303.PubMedCrossRefGoogle Scholar
  29. Eslinger, P. J., & Grattan, L. M. (1994). Altered serial position learning after frontal lobe lesion. Neuropsychologia, 32, 729–739.PubMedCrossRefGoogle Scholar
  30. Frith, C., Friston, K., Liddle, P., & Frackowiak, D. (1991). A PET study of word finding. Neuropsychologia, 29, 1137–1148.PubMedCrossRefGoogle Scholar
  31. Funahashi, S., Bruce, C. J., & Goldman-Rakic, P. S. (1993). Dorsolateral prefrontal lesions and oculomotor delayed-response performance: Evidence for mnemonic “scotomas.” Journal of Neuroscience, 13, 1479–1497.PubMedGoogle Scholar
  32. Fuster, J. M. (1989). The prefrontal cortex (2nd ed.). New York: Raven Press.Google Scholar
  33. Gabrieli, J. D., Desmond, J. E., Demb, J. B., Wagner, A. D., Stone, M. V., Vaidya, C. J., & Glover, G. H. (1996). Functional magnetic resonance imaging of semantic memory processes in the frontal lobes. Psychological Science, 7, 278–283.CrossRefGoogle Scholar
  34. Gershberg, F. B., & Shimamura, A. P. (1995). The role of the frontal lobes in the use of organizational strategies in free recall. Neuropsychologia, 13, 1395–1333.Google Scholar
  35. Goldman-Rakic, P. S. (1987). Circuitry of primate prefrontal cortex and regulation of behavior by representational memory. In F. Plum & V. B. Mountcastle (Eds.), Handbook of Physiology: Sec. 1. The nervous system: Vol. 5. Higher functions of the brain (pp. 373–417). Bethesda, MD: American Physiological Society.Google Scholar
  36. Goldman-Rakic, P. (1998). The prefrontal landscape: Implications of functional architecture for understanding human mentation and the central executive. In A. C. Roberts, T. W. Robbins, & L. Weiskrantz (Eds.), The prefrontal cortex: Executive and cognitive function (pp. 87–102). Oxford: Oxford University Press.CrossRefGoogle Scholar
  37. Goldstein, K. (1936). The significance of the frontal lobes for mental performance. Journal of Neurology & Psychopathology, 17, 27–40.CrossRefGoogle Scholar
  38. Grossberg, S. (1982). Studies of mind and brain: Neural principles of learning, perception, development, cognition, and motor control. Norwell, MA: Kluwer.Google Scholar
  39. Grossberg, S. (1999). The link between brain learning, attention, and consciousness. Consciousness & Cognition, 8, 1–44.CrossRefGoogle Scholar
  40. Halstead, W. C. (1947). Brain and intelligence: A quantitative study of the frontal lobes. Chicago: University of Chicago Press.Google Scholar
  41. Harlow, J. M. (1848). Passage of an iron rod through the head. Boston Medical & Surgical Journal, 39, 389–393.CrossRefGoogle Scholar
  42. Harlow, J. M. (1868). Recovery of an iron rod through the head. Publication of the Massachusetts Medical Society, 2, 327–347.Google Scholar
  43. Hebb, D. O. (1945). Man’s frontal lobes: A critical review. Archives of Neurology & Psychiatry, 54, 10–24.CrossRefGoogle Scholar
  44. Hirst, W, & Volpe, B. T. (1988). Memory strategies with brain damage. Brain & Cognition, 8, 379–408.CrossRefGoogle Scholar
  45. Jacobson, C. F. (1936). Studies of cerebral function in primates. Comparative Psychology Monographs, 13, 1–8.Google Scholar
  46. Janowsky, J. S., Shimamura, A. P., Kritchevsky, M., & Squire, L. R. (1989). Cognitive impairment following frontal lobe damage and its relevance to human amnesia. Behavioral Neuroscience, 103, 548–560.PubMedCrossRefGoogle Scholar
  47. Janowsky, J. S., Shimamura, A. P., & Squire, L. R. (1989). Source memory impairment in patients with frontal lobe lesions. Neuropsychologia, 27, 1043–1056.PubMedCrossRefGoogle Scholar
  48. Johnson, M. K., Hashtroudi, S., & Lindsay, D. S. (1993). Source monitoring. Psychological Bulletin, 114, 3–28.PubMedCrossRefGoogle Scholar
  49. Jones-Gotman, M., & Milner, B. (1977). Design fluency: The invention of nonsense drawings after focal cortical lesion. Neuropsychologia, 15, 653–674.PubMedCrossRefGoogle Scholar
  50. Jonides, J., Schumacher, E. H., Smith, E. E., Lauber, E. J., Awh, E., Minoshima, S., & Koeppe, R. A. (1997). Verbal working memory load affects regional brain activation as measured by PET. Journal of Cognitive Neuroscience, 9, 462–475.PubMedCrossRefGoogle Scholar
  51. Jonides, J., Smith, E. E., Koeppe, R. A., Awh, E., Minoshima, S., & Mintun, M. A. (1993). Spatial working memory in humans as revealed by PET. Nature, 363, 623–625.PubMedCrossRefGoogle Scholar
  52. Jonides, J., Smith, E. E., Marshuetz, C., Koeppe, R. A., & Reuter-Lorenz, P. A. (1998). Inhibition of verbal working memory revealed by brain activation. Proceedings of the National Academy of Sciences, 95, 8410–8413.CrossRefGoogle Scholar
  53. Kimberg, D. Y., & Farah, M. J. (1993). A unified account of cognitive impairments following frontal lobe damage: The role of working memory in complex, organized behavior. Journal of Experimental Psychology: General, 122, 411–428.CrossRefGoogle Scholar
  54. Knight, R. T., Scabini, D., & Woods, D. L. (1989). Prefrontal gating of auditory transmission in humans. Brain Research, 504, 338–342.PubMedCrossRefGoogle Scholar
  55. Knight, R. T., Staines, W. R., Swick, D., & Chao, L. L. (1999). Prefrontal cortex regulates inhibition and excitation in distributed neural networks. Acta Psychologica, 101, 159–178.PubMedCrossRefGoogle Scholar
  56. Konishi, S., Nakajima, K., Uchida, I., Kikyo, H., Kameyama, M., & Miyashita, Y. (1999). Common inhibitory mechanism in human inferior prefrontal cortex revealed by event-related functional MRI. Brain, 122, 981–991.PubMedCrossRefGoogle Scholar
  57. Lhermitte, F. (1986). Human autonomy and the frontal lobes: Part II. Patient behavior in complex and social situations: The “environmental dependency syndrome.” Annals of Neurology, 19, 335–343.PubMedCrossRefGoogle Scholar
  58. Luria, A. R. (1966). Higher cortical functions in man. New York: Basic Books.Google Scholar
  59. MacLeod, C. (1991). Half a century of research on the Stroop effect: An integrative review. Psychological Bulletin, 109, 163–203.PubMedCrossRefGoogle Scholar
  60. Macmillan, M. B. (1986). A wonderful journey through skull and brains: The travels of Mr. Gage’s tamping iron. Brain & Cognition, 5, 67–107.CrossRefGoogle Scholar
  61. Macmillan, M. B. (2000). An odd kind of fame: Stories of Phineas Gage. Cambridge, MA: MIT Press.Google Scholar
  62. Mattson, A. J., & Levin, H. S. (1990). Frontal lobe dysfunction following closed head injury. Journal of Nervous & Mental Disease, 178, 282–291.CrossRefGoogle Scholar
  63. McCarthy, G., Blamire, A. M., Rothman, D. L., Gruetter, R., & Shulman, R. G. (1993). Echo-planar magnetic resonance imaging studies of frontal cortex activation during word generation in humans. Proceedings of the National Academy of Sciences, 90, 4952–4956.CrossRefGoogle Scholar
  64. Miller, B. L., & Cummings, J. L. (Eds.) (1999). The human frontal lobes: Functions and disorders. New York: Guilford.Google Scholar
  65. Miller, B. L., Darby, A. L., Swartz, J. R., Yener, G. G., & Mena, I. (1995). Dietary changes, compulsions and sexual behavior in frontotemporal degeneration. Dementia, 6, 195–199.PubMedGoogle Scholar
  66. Miller, E. K., Erickson, C. A., & Desimone, R. (1996). Neural mechanisms of visual working memory in prefrontal cortex of the macaque. Journal of Neuroscience, 16, 5154–5167.PubMedGoogle Scholar
  67. Milner, B. (1964). Some effects of frontal lobectomy in man. In J. Warren & K. Akert (Eds.), The frontal granular cortex and behavior (pp. 313–331). New York: McGraw-Hill.Google Scholar
  68. Milner, B. (1971). Interhemispheric differences in the localization of psychological processes in man. British Medical Bulletin, 127, 272–277.Google Scholar
  69. Milner, B., Petrides, M., & Smith, M. L. (1985). Frontal lobes and the temporal organization of memory. Human Neurobiology, 4, 137–142.PubMedGoogle Scholar
  70. Mishkin, M. (1964). Perseveration of central sets after frontal lesions in monkey. In J. M. Warren & K. Akert (Eds.), The frontal granular cortex and behavior (pp. 219–241), New York: McGraw-Hill.Google Scholar
  71. Mishkin, M., & Manning, F. J. (1978). Nonspatial memory after selective prefrontal lesions in monkeys. Brain Research, 143, 313–323.PubMedCrossRefGoogle Scholar
  72. Monsell, S. (1996). Control of mental processes. In V. Bruce (Ed.), Unsolved mysteries of the mind: Tutorial essays in cognition (pp. 93–148). Hove, U.K.: Erlbaum Taylor & Francis.Google Scholar
  73. Moscovitch, M. (1994). Cognitive resources and dual-task interference effects at retrieval in normal people: The role of the frontal lobes and medial temporal cortex. Neuropsychology, 8, 524–534.CrossRefGoogle Scholar
  74. Nolde, S. F., Johnson, M. K., & D’Esposito, M. (1998). Left prefrontal activation during episodic remembering: An event-related fMRI study. NeuroReport, 9, 3509–3514.PubMedCrossRefGoogle Scholar
  75. Nyberg, L., Cabeza, R., & Tulving, E. (1996). PET studies of encoding and retrieval: The HERA model. Psychonomic Bulletin & Review, 3, 135–148.CrossRefGoogle Scholar
  76. Owen, A. M., Downes, J. J., Sahakian, B. J., Polkey, C. E., & Robbins, T. W. (1990). Planning and spatial working memory following frontal lobe lesions in man. Neuropsychologia, 28, 1021–1034.PubMedCrossRefGoogle Scholar
  77. Owen, A. M., Roberts, A. C., Hodges, J. R., Summers, B. A., Polkey, C. E., & Robbins, T. W. (1993). Contrasting mechanisms of impaired attentional set-shifting in patients with frontal lobe damage or Parkinson’s disease. Brain, 116, 1159–1175.PubMedCrossRefGoogle Scholar
  78. Pandya, D. N., & Yeterian, E. H. (1998). Comparison of prefrontal architecture and connections. In A. C. Roberts, T. W. Robbins, & L. Weiskrantz (Eds.) The prefrontal cortex (pp. 51–66). Oxford: Oxford University Press.CrossRefGoogle Scholar
  79. Perret, E. (1974). The left frontal lobe of man and the suppression of habitual responses in verbal categorical behaviour. Neuropsychologia, 12, 323–330.PubMedCrossRefGoogle Scholar
  80. Peterson, B. S., Bradley S., Skudlarski, P., Gatenby, J. C., & Zhang, H. (1999). An fMRI study of Stroop word-color interference: Evidence for cingulate subregions subserving multiple distributed attentional systems. Biological Psychiatry, 45, 1237–1258.PubMedCrossRefGoogle Scholar
  81. Petrides, M. (1994). Frontal lobes and working memory: Evidence from investigations of the effects of cortical excisions in nonhuman primates. In F. Boller & J. Grafman (Eds.), Handbook of neuropsychology (Vol. 9, pp. 75–90). Amsterdam: Elsevier.Google Scholar
  82. Petrides, M. (1998). Specialized systems for the processing of mnemonic information within the primate frontal cortex. In A. C. Roberts, T. W. Robbins, & L. Weiskrantz (Eds.), The prefrontal cortex: Executive and cognitive function (pp. 103–116). Oxford: Oxford University Press.CrossRefGoogle Scholar
  83. Petrides, M., Alivisatos, B., & Evans, A. C. (1995). Functional activation of the human ventrolateral frontal cortex during mnemonic retrieval of verbal information. Proceedings of the National Academy of Sciences, 92, 5803–5807.CrossRefGoogle Scholar
  84. Petrides, M., Alivisatos, B., Evans, A. C., & Meyer, E. (1993). Dissociation of human mid-dorsolateral frontal cortex in memory processing. Proceedings of the National Academy of Sciences, 90, 878–882.CrossRefGoogle Scholar
  85. Petrides, M., & Milner, B. (1982). Deficits on subject-ordered tasks after frontal- and temporal-lobe lesions in man. Neuropsychologia, 20, 249–262.PubMedCrossRefGoogle Scholar
  86. Petrides, M., & Pandya, D. N. (1994). Comparative architectonic analysis of the human and macaque frontal cortex. In F. Boller & J. Grafman (Eds.), Handbook of neuropsychology (Vol. 9, pp. 59–82). Amsterdam: Elsevier.Google Scholar
  87. Ptito, A., Crane, J., Leonard, G., Amsel, R., & Caramanos, Z. (1995). Visual-spatial localization by patients with frontal-lobe lesions invading or sparing area 46. NeuroReport, 6, 1781–1784.PubMedCrossRefGoogle Scholar
  88. Rafal, R., Gershberg, F., Egly, R., & Ivry, R. (1996). Response channel activation and the lateral prefrontal cortex. Neuropsychologia, 34, 1197–1202.PubMedCrossRefGoogle Scholar
  89. Rainer, G., Asaad, W. F., & Miller, E. K. (1998). Selective representation of relevant information by neurons in the primate prefrontal cortex. Nature, 393, 577–579.PubMedCrossRefGoogle Scholar
  90. Rao, S. C., Rainer, G., & Miller, E. K. (1997). Integration of what and where in the primate prefrontal cortex. Science, 176, 821–824.CrossRefGoogle Scholar
  91. Roberts, A. C., Robbins, T. W, & Weiskrantz, L. (Eds.) (1998). The prefrontal cortex: Executive and cognitive function. Oxford: Oxford University Press.Google Scholar
  92. Rule, R., Shimamura, A. P., & Knight, R. P. (1999, November). Disinhibition of emotional responses following lesions of the ventromedial prefrontal cortex. Paper presented at the Society for Neuroscience Annual Meeting.Google Scholar
  93. Schacter, D. L., Harbluk, J., & McLachlan, D. (1984). Retrieval without recollection: An expert analysis of source amnesia. Journal of Verbal Learning & Verbal Behavior, 23, 593–611.CrossRefGoogle Scholar
  94. Shallice, T. (1982). Specific impairments in planning. Philosophical Transactions of the Royal Society of London: Series B, 298, 199–209.CrossRefGoogle Scholar
  95. Shimamura, A. P. (1994). Memory and frontal lobe function. In M. S. Gazzaniga (Ed.), The cognitive neurosciences (pp. 803–813), Cambridge, MA: MIT Press.Google Scholar
  96. Shimamura, A. P. (1996). The control and monitoring of memory functions. In L. Reder (Ed.), Metacognition and implicit memory (pp. 259–274). Mahwah, NJ: Erlbaum.Google Scholar
  97. Shimamura, A. P. (2000). The neurological case of Eadweard J. Muybridge: The role of the orbitofrontal cortex in regulating emotions. Manuscript submitted for publication.Google Scholar
  98. Shimamura, A. P., Janowsky, J. S., & Squire, L. R. (1990). Memory for the temporal order of events in patients with frontal lobe lesions and amnesic patients. Neuropsychologia, 28, 803–813.PubMedCrossRefGoogle Scholar
  99. Shimamura, A. P., Jurica, P. J., Mangels, J. A., Gershberg, F. B., & Knight, R. T. (1995). Susceptibility to memory interference effects following frontal lobe damage: Findings from tests of paired-associated learning. Journal of Cognitive Neuroscience, 7, 144–152.PubMedCrossRefGoogle Scholar
  100. Skinner, J. E., & Yingling, C. D. (1977). Central gating mechanisms that regulate event-related potentials and behavior. In J. E. Desmedt (Ed.), Attention, voluntary contraction, and event-related cerebral potentials (Progress in Clinical Neurophysiology, Vol. 1, pp. 30–69). Basel: Karger.Google Scholar
  101. Smith, E. E., & Jonides, J. (1999). Storage and executive processes in the frontal lobes. Science, 283, 1657–1661.PubMedCrossRefGoogle Scholar
  102. Smith, E. E., Jonides, J., Koeppe, R. A., Awh, E., Schumacher, E. H., & Minoshima, S. (1995). Spatial versus object working memory: PET investigations. Journal of Cognitive Neuroscience, 7, 337–356.PubMedCrossRefGoogle Scholar
  103. Stroop, J. (1935). Studies of interference in serial verbal reactions. Journal of Experimental Psychology, 18, 643–662.CrossRefGoogle Scholar
  104. Stuss, D. T., & Benson, F. (1986). The frontal lobes. New York: Raven Press.Google Scholar
  105. Stuss, D., Eskes, G., & Foster, J. (1994). Experimental neuropsychological studies of frontal lobe functions. In F. Boller & J. Grafman (Eds.), Handbook of neuropsychology (Vol. 9, pp. 149–185). Amsterdam: Elsevier.Google Scholar
  106. Teuber, H.-L. (1964). The riddle of frontal lobe function in man. In J. M. Warren & K. Akert (Eds.), The frontal granular cortex and behavior (pp. 410–444), New York: McGraw-Hill.Google Scholar
  107. Thompson-Schill, S. L., Swick, D., Farah, M. J., D’Esposito, M., Kan, I. P., & Knight R. T. (1998). Verb generation in patients with focal frontal lesions: A neuropsychological test of neuroimaging findings. Proceedings of the National Academy of Sciences, 95, 15855–15860.CrossRefGoogle Scholar
  108. Tulving, E., Kapur, S., Craik, F. I. M., Moscovitch, M., & Houle, S. (1994). Hemispheric encoding/retrieval asymmetry in episodic memory: Positron emission tomography findings. Proceedings of the National Academy of Sciences, 91, 2016–2020.CrossRefGoogle Scholar
  109. Ungerleider, L. G., & Mishkin, M. (1982). Two cortical visual systems. In D. J. Ingle, M. A. Goodale, & R. J. W. Mansfield (Eds.), The analysis of visual behavior (pp. 549–586). Cambridge, MA: MIT Press.Google Scholar
  110. Wagner, A. D., Schacter, D. L., Rotte, M., & Koutstaal, W. (1998). Building memories: Remembering and forgetting of verbal experiences as predicted by brain activity. Science, 281, 1188–1191.PubMedCrossRefGoogle Scholar
  111. Walker, A. E. (1940). A cytoarchitectural study of the prefrontal area of the macaque monkey. Journal of Comparative Neurology, 73, 59–89.CrossRefGoogle Scholar
  112. Wilson, F. A. W., O’Scalaidhe, S. P., & Goldman-Rakic, P. S. (1993). Dissociation of object and spatial processing domains in primate prefrontal cortex. Science, 260, 1955–1958.PubMedCrossRefGoogle Scholar
  113. Yamaguchi, S., & Knight, R. T. (1990). Gating of somatosensory inputs by human prefrontal cortex. Brain Research, 521, 281–288.PubMedCrossRefGoogle Scholar

Copyright information

© Psychonomic Society, Inc. 2000

Authors and Affiliations

  1. 1.Department of Psychology (1650)University of CaliforniaBerkeleyUSA

Personalised recommendations