Psychonomic Bulletin & Review

, Volume 7, Issue 3, pp 424–465

How to fit a response time distribution

  • Trisha Van Zandt
Article

Abstract

Among the most valuable tools in behavioral science is statistically fitting mathematical models of cognition to data—response time distributions, in particular. However, techniques for fitting distributions vary widely, and little is known about the efficacy of different techniques. In this article, we assess several fitting techniques by simulating six widely cited models of response time and using the fitting procedures to recover model parameters. The techniques include the maximization of likelihood and least squares fits of the theoretical distributions to different empirical estimates of the simulated distributions. A running example is used to illustrate the different estimation and fitting procedures. The simulation studies reveal that empirical density estimates are biased even for very large sample sizes. Some fitting techniques yield more accurate and less variable parameter estimates than do others. Methods that involve least squares fits to density estimates generally yield very poor parameter estimates.

References

  1. Ashby, F. G., Tein, J.-Y., &Balakrishnan, J. D. (1993). Response time distributions in memory scanning.Journal of Mathematical Psychology,37, 526–555.CrossRefGoogle Scholar
  2. Balota, D. A., &Spieler, D. H. (1999). Word frequency, repetition, and lexicality effects in word recognition tasks: Beyond measures of central tendency.Journal of Experimental Psychology: General,128, 32–55.CrossRefGoogle Scholar
  3. Bickel, P. J., &Doksum, K. A. (1977).Mathematical statistics. San Francisco: Holden-Day.Google Scholar
  4. Blanco, M. J., &Alvarez, A. A. (1994). Psychometric intelligence and visual focused attention: Relationships in nonsearch tasks.Intelligence,18, 77–106.CrossRefGoogle Scholar
  5. Blough, D. S. (1988). Quantitative relations between visual search speed and target-distractor similarity.Perception & Psychophysics,43, 57–71.CrossRefGoogle Scholar
  6. Bloxom, B. (1984). Estimating response time hazard functions: An exposition and extension.Journal of Mathematical Psychology,28, 401–420.CrossRefGoogle Scholar
  7. Bloxom, B. (1985). A constrained spline estimator of a hazard function.Psychometrika,50, 301–321.CrossRefGoogle Scholar
  8. Burbeck, S. L., &Luce, R. D. (1982). Evidence from auditory simple reaction times for both change and level detectors.Perception & Psychophysics,32, 117–133.CrossRefGoogle Scholar
  9. Chechile, R. A. (1998). Reexamining the goodness-of-fit problem for interval-scale scores.Behavior Research Methods, Instruments, & Computers,30, 227–231.CrossRefGoogle Scholar
  10. Colonius, H. (1995). The instance theory of automaticity: Why the Weibull?Psychological Review,102, 744–750.CrossRefGoogle Scholar
  11. Cousineau, D., &Larochelle, S. (1997). PASTIS: A program for curve and distribution analyses.Behavior Research Methods, Instruments, & Computers,29, 542–548.CrossRefGoogle Scholar
  12. Dawson, M. R. W. (1988). Fitting the ex-Gaussian equation to reaction time distributions.Behavior Research Methods, Instruments, & Computers,20, 54–57.CrossRefGoogle Scholar
  13. Devroye, L. (1987).A course in density estimation. Boston: Birkhäuser.Google Scholar
  14. Emerson, P. L. (1970). Simple reaction time with Markovian evolution of Gaussian discriminal processes.Psychometrika,35, 99–109.CrossRefGoogle Scholar
  15. Feller, W. (1968).An introduction to probability theory and its applications (Vol. 1). New York: Wiley.Google Scholar
  16. Gallant, A. R. (1987).Nonlinear statistical models. New York: Wiley.CrossRefGoogle Scholar
  17. Golden, R. M. (1999). Statistical tests for comparing possibly misspecified and non-nested models.Journal of Mathematical Psychology,44, 153–170.CrossRefGoogle Scholar
  18. Green, D. M., &Luce, R. D. (1971). Detection of auditory signals presented at random times: III.Perception & Psychophysics,9, 257–268.CrossRefGoogle Scholar
  19. Green, D. M., &Smith, A. F. (1982). Detection of auditory signals occurring at random times: Intensity and duration.Perception & Psychophysics,31, 117–127.CrossRefGoogle Scholar
  20. Heathcote, A. (1996). RTSYS: A DOS application for the analysis of reaction time data.Behavior Research Methods, Instruments, & Computers,28, 427–445.CrossRefGoogle Scholar
  21. Heathcote, A., Popiel, S. J., &Mewhort, D. J. (1991). Analysis of response time distributions: An example using the Stroop task.Psychological Bulletin,109, 340–347.CrossRefGoogle Scholar
  22. Hockley, W. E. (1984). Analysis of response time distributions in the study of cognitive processes.Journal of Experimental Psychology: Learning, Memory, & Cognition,10, 598–615.CrossRefGoogle Scholar
  23. Hockley, W. E., &Murdock, B. (1987). A decision model for accuracy and response latency in recognition memory.Psychological Review,94, 341–358.CrossRefGoogle Scholar
  24. Hohle, R. H. (1965). Inferred components of reaction times as a function of foreperiod duration.Journal of Experimental Psychology,69, 382–386.PubMedCrossRefGoogle Scholar
  25. Juhel, J. (1993). Should we take the shape of reaction time distributions into account when studying the relationship between RT and psychometric intelligence?Personality & Individual Differences,15, 357–360.CrossRefGoogle Scholar
  26. Knuth, D. E. (1981).Seminumerical algorithms. Reading, MA: Addison-Wesley.Google Scholar
  27. Leth-Steenson, C., King Elbaz, Z., &Douglas, V. I. (2000). Mean response times, variability, and skew in the responding of ADHD children: A response time distributional approach.Acta Psychologica,104, 167–190.CrossRefGoogle Scholar
  28. Logan, G. D. (1988). Toward an instance theory of automatization.Psychological Review,95, 492–527.CrossRefGoogle Scholar
  29. Logan, G. D. (1992). Shapes of reaction-time distributions and shapes of learning curves: A test of the instance theory of automaticity.Journal of Experimental Psychology: Learning, Memory, & Cognition,18, 883–914.CrossRefGoogle Scholar
  30. Logan, G. D. (1995). The Weibull distribution, the power law, and the instance theory of automaticity.Psychological Review,102, 751–756.CrossRefGoogle Scholar
  31. Luce, R. D. (1986).Response times: Their role in inferring elementary mental organization. New York: Oxford University Press.Google Scholar
  32. Madden, D., Gottlob, L., Denny, L., Turkington, T., Provenzale, J., Hawk, T., &Coleman, R. (1999). Aging and recognition memory: Changes in regional cerebral blood flow associated with components of reaction time distributions.Journal of Cognitive Neuroscience,11, 511–520.PubMedCrossRefGoogle Scholar
  33. McClelland, J. (1979). On the time relations of mental processes: An examination of systems of processes in cascade.Psychological Review,86, 287–330.CrossRefGoogle Scholar
  34. McElree, B. (1998). Attended and non-attended states in working memory: Accessing categorized structures.Journal of Memory & Language,37, 225–252.CrossRefGoogle Scholar
  35. McElree, B., &Dosher, B. A. (1993). Serial retrieval processes in the recovery of order information.Journal of Experimental Psychology: General,122, 291–315.CrossRefGoogle Scholar
  36. McGill, W. J. (1963). Stochastic latency mechanisms. In R. D. Luce & R. R. Bush (Eds.),Handbook of mathematical psychology (Vol. 1, pp. 309–360). New York: Wiley.Google Scholar
  37. Miller, J. (1982). Divided attention: Evidence for coactivation with redundant signals.Cognitive Psychology,14, 247–279.PubMedCrossRefGoogle Scholar
  38. Myung, I. J. (1999). The importance of complexity in model selection.Journal of Mathematical Psychology,44, 190–204.CrossRefGoogle Scholar
  39. Nelder, J. A., &Mead, R. (1965). A simplex method for function minimization.Computer Journal,7, 308–313.Google Scholar
  40. Nosofsky, R. M., &Palmeri, T. J. (1997). Comparing exemplarretrieval and decision-bound models of speeded perceptual classification.Perception & Psychophysics,59, 1027–1048.CrossRefGoogle Scholar
  41. Parzen, E. (1962). On estimation of a probability density function and mode.Annals of Mathematical Statistics,33, 1065–1076.CrossRefGoogle Scholar
  42. Pike, R. (1973). Response latency models for signal detection.Psychological Review,80, 53–68.PubMedCrossRefGoogle Scholar
  43. Plourde, C., &Besner, D. (1997). On the locus of the word frequency effect in visual word recognition.Canadian Journal of Experimental Psychology,51, 181–194.Google Scholar
  44. Possamai, C. (1991). A responding hand effect in a simple-RT precueing experiment: Evidence for a late locus of facilitation.Acta Psychologica,77, 47–63.PubMedCrossRefGoogle Scholar
  45. Press, W. H., Teukolsky, S. A., Vetterling, W. T., &Flannery, B. P. (1992).Numerical recipes in FORTRAN: The art of scientific computing (2nd ed.). New York: Cambridge University Press.Google Scholar
  46. Ratcliff, R. (1978). A theory of memory retrieval.Psychological Review,85, 59–108.CrossRefGoogle Scholar
  47. Ratcliff, R. (1979). Group reaction time distributions and an analysis of distribution statistics.Psychological Bulletin,86, 446–461.PubMedCrossRefGoogle Scholar
  48. Ratcliff, R. (1988). Continuous versus discrete information processing: Modeling the accumulation of partial information.Psychological Review,95, 238–255.PubMedCrossRefGoogle Scholar
  49. Ratcliff, R. &Murdock, B. B., Jr. (1976). Retrieval processes in recognition memory.Psychological Review,83, 190–214.CrossRefGoogle Scholar
  50. Read, T. R. C., &Cressie, N. A. C. (1988).Goodness-of-fit statistics for discrete multivariate data. New York: Springer-Verlag.Google Scholar
  51. Reber, P. J., Alvarez, P., &Squire, L. R. (1997). Reaction time distributions across normal forgetting: Searching for markers of memory.Learning & Memory,4, 284–290.CrossRefGoogle Scholar
  52. Rohrer, D., &Wixted, J. T. (1994). An analysis of latency and interresponse time in free recall.Memory & Cognition,22, 511–524.CrossRefGoogle Scholar
  53. Rudd, M. E. (1996). A neural timing model of visual threshold.Journal of Mathematical Psychology,40, 1–29.CrossRefGoogle Scholar
  54. Silverman, B. W. (1986).Density estimation for statistics and data analysis. London: Chapman & Hall.Google Scholar
  55. Smith, D., &Mewhort, D. (1998). The distribution of latencies constrains theories of decision time: A test of the random-walk model using numeric comparison.Australian Journal of Psychology,50, 149–156.CrossRefGoogle Scholar
  56. Smith, P. L., &Vickers, D. (1988). The accumulator model of twochoice discrimination.Journal of Mathematical Psychology,32, 135–168.CrossRefGoogle Scholar
  57. Spieler, D. H., Balota, D. A., &Faust, M. E. (1996). Stroop performance in healthy younger and older adults and in individuals with dementia of the Alzheimer’s type.Journal of Experimental Psychology: Human Perception & Performance,22, 461–479.CrossRefGoogle Scholar
  58. Strayer, D. L., &Kramer, A. F. (1994). Strategies and automaticity: I. Basic findings and conceptual framework.Journal of Experimental Psychology: Learning, Memory, & Cognition,20, 318–341.CrossRefGoogle Scholar
  59. Tapia, R. A., &Thompson, J. R. (1978).Nonparametric probability density estimation. Baltimore: Johns Hopkins University Press.Google Scholar
  60. Tolhurst, D. J. (1975). Reaction times in the detection of gratings by human observers: A probabilistic mechanism.Vision Research,15, 1143–1149.PubMedCrossRefGoogle Scholar
  61. Townsend, J. T. (1990). Truth and consequences of ordinal differences in statistical distributions: Toward a theory of hierarchical inference.Psychological Bulletin,108, 551–567.PubMedCrossRefGoogle Scholar
  62. Townsend, J. T., &Ashby, F. G. (1983).Stochastic modeling of elementary psychological processes. New York: Cambridge University Press.Google Scholar
  63. Van Zandt, T., Colonius, H., &Proctor, R. W. (2000). A comparison of two response time models applied to perceptual matching.Psychonomic Bulletin & Review,7, 208–256.CrossRefGoogle Scholar
  64. Van Zandt, T., &Ratcliff, R. (1995). Statistical mimicking of reaction time data: Single-process models, parameter variability, and mixtures.Psychonomic Bulletin & Review,2, 20–54.CrossRefGoogle Scholar
  65. Wald, A. (1947).Sequential analysis. New York: Wiley.Google Scholar
  66. Wickens, T. D. (1982).Models for behavior: Stochastic processes in psychology. San Francisco: Freeman.Google Scholar
  67. Wixted, J. T., &Rohrer, D. (1993). Proactive interference and the dynamics of free recall.Journal of Experimental Psychology: Learning, Memory, & Cognition,19, 1024–1039.CrossRefGoogle Scholar

Copyright information

© Psychonomic Society, Inc. 2000

Authors and Affiliations

  • Trisha Van Zandt
    • 1
  1. 1.Johns Hopkins UniversityBaltimore
  2. 2.Department of PsychologyOhio State UniversityColumbus

Personalised recommendations