Perception & Psychophysics

, Volume 57, Issue 3, pp 305–317

Synchronizing actions with events: The role of sensory information

Article
  • 905 Downloads

Abstract

Tasks requiring the subject to tap in synchrony to a regular sequence of stimulus events (e.g., clicks) usually elicit a response pattern in which the tap precedes the click by about 30-50 msec. This “negative asynchrony” was examined, first, by instructing subjects to use different effectors for tapping (hand vs. foot; Experiments 1 and 2), and second, by administering extrinsic auditory feedback in addition to the intrinsic tactile/kinesthetic feedback (Experiment 2). Experiment 3 controlled whether the results observed in Experiment 2 were due to purely sensory factors within the auditory modality. Results suggest that taps are synchronized with clicks at the central level by superimposing two sensory codes in time: the tactile/kinesthetic code that represents the tap (the afferent movement code) and the auditory code that represents the click (the afferent code that results from the guiding signal). Because the processing times involved in code generation are different for these two central codes, the tap has to lead over the click.

References

  1. Allport, A., MacKay, D. G., Prinz, W., &Scheerer, E. (Eds.) (1987).Language perception and production. London: Academic Press.Google Scholar
  2. Aschersleben, G. (1994).Afferente Informationen und die Synchronisation von Ereignissen [Afferent information and the synchronization of events]. Frankfurt: Lang.Google Scholar
  3. Auxiette, C. (1992).Coordination et synchronisation de deux sequences sonores perçues et produites [The coordination and synchronization of two perceived and produced sound sequences]. Unpublished doctoral dissertation, University of Paris.Google Scholar
  4. Bard, C., Paillard, J., Lajoie, Y., Fleury, M., Teasdale, N., Forget, R., &Lamarre, Y. (1992). Role of the afferent information in the timing of motor commands: A comparative study with a deafferent patient.Neuropsychologia,30, 201–206.CrossRefPubMedGoogle Scholar
  5. Bard, C., Paillard, J., Teasdale, N., Fleury, M., &Lajoie, Y. (1991). Self-induced versus reactive triggering of synchronous hand and heel movement in young and old subjects. In J. Requin & G. E. Stelmach (Eds.),Tutorials in motor neuroscience (pp. 189–196). Amsterdam: Kluwer.Google Scholar
  6. Collyer, C. E., Broadbent, H. A., &Church, R. M. (1992). Categorical time production: Evidence for discrete timing in motor control.Perception & Psychophysics,51, 134–144.CrossRefGoogle Scholar
  7. Collyer, C. E., Broadbent, H. A., &Church, R. M. (1994). Preferred rates of repetitive tapping and categorical time production.Perception & Psychophysics,55, 443–453.CrossRefGoogle Scholar
  8. Dennett, D. C., &Kinsbourne, M. (1992). Time and the observer: The where and the when of consciousness and the brain.Behavioral & Brain Sciences,15, 183–247.Google Scholar
  9. Dunlap, K. (1910). Reactions on rhythmic stimuli, with attempt to synchronize.Psychological Review,17, 399–416.CrossRefGoogle Scholar
  10. Elliott, L. L. (1971). Backward and forward masking.Audiology,10, 65–76.CrossRefGoogle Scholar
  11. Fraisse, P. (1966). L’anticipation de stimulus rythmiques, vitesse d’établissement et précision de la synchronisation [Anticipation of rhythmical stimuli, set-up speed and accuracy of synchronization].L’Année Psychologique,66, 15–36.CrossRefPubMedGoogle Scholar
  12. Fraisse, P. (1980). Les synchronisations sensori-motrices aux rythmes [The sensorimotor synchronization of rhythms]. In J. Requin (Ed.),Anticipation et comportement (pp. 233–257). Paris: Centre National.Google Scholar
  13. Fraisse, P., Oléron, G., &Paillard, J. (1958). Sur les repères sensoriels qui permettent de contrôler les mouvements d’accompagnement de stimuli périodiques [On the sensory reference points that allow for controlling movements accompanying periodic stimuli].L’Année Psychologique,58, 322–338.Google Scholar
  14. Franek, M., Radil, T., Indra, M., &Lánsky, P. (1987). Following complex rhythmical acoustical patterns by tapping.International Journal of Psychophysiology,5, 187–192.CrossRefPubMedGoogle Scholar
  15. Geisser, S., &Greenhouse, S. W. (1958). An extension of Box’s results on the use of F-distribution in multivariate analysis.Annals of Mathematical Statistics,29, 885–891.CrossRefGoogle Scholar
  16. Gérard, C., &Auxiette, C. (1992). The processing of musical prosody by musical and nonmusical children.Music Perception,10, 93–126.Google Scholar
  17. Greenwald, A. G. (1970). Sensory feedback mechanisms in performance control: With special reference to the ideo-motor mechanism.Psychological Review,77, 73–99.CrossRefPubMedGoogle Scholar
  18. Hary, D., &Moore, G. P. (1985). Temporal tracking and synchronization strategies.Human Neurobiology,4, 73–77.PubMedGoogle Scholar
  19. Hary, D., &Moore, G. P. (1987). Synchronizing human movement with an external clock source.Biological Cybernetics,56, 305–311.CrossRefPubMedGoogle Scholar
  20. Hawkins, H. L., Thomas, G., Presson, J., Cozic, A., &Brookmire, D. (1974). Precategorical selective attention and tonal specificity in auditory recognition.Journal of Experimental Psychology,103, 530–538.CrossRefPubMedGoogle Scholar
  21. Hirsh, I. J., &Sherrick, C. E. (1961). Perceived order in different sense modalities.Journal of Experimental Psychology,62, 423–432.CrossRefPubMedGoogle Scholar
  22. Ilmberger, J., Müller, U., Pöppel, E., Mates, J., &Radil, T. (1990). Timing of rhythmic tapping and lateralization.Activas Nervosa Superior,32, 142.Google Scholar
  23. Ivry, R. B., Keele, S. W., &Diener, H. C. (1988). Dissociation of the lateral and medial cerebellum in movement timing and movement execution.Experimental Brain Research,73, 167–180.CrossRefGoogle Scholar
  24. Kelso, J. A. S., &Kay, B. A. (1987). Information and control: A macroscopic analysis of perception-action coupling. In H. Heuer & A. F. Sanders (Eds.),Perspectives on perception and action (pp. 3–32). Hillsdale, NJ: Erlbaum.Google Scholar
  25. Koch, R. (1992).Sensumotorische Synchronisation: Eine Kostenanalyse [Sensorimotor synchronization: A cost analysis] (Paper 11/92). Munich: Max-Planck-Institute for Psychological Research.Google Scholar
  26. Kolers, P. A., &Brewster, J. M. (1985). Rhythms and responses.Journal of Experimental Psychology: Human Perception & Performance,11, 150–167.CrossRefGoogle Scholar
  27. Lynn, G. K., &Small, A. M. (1977). Interactions of backward and forward masking.Journal of the Acoustical Society of America,61, 185–189.CrossRefPubMedGoogle Scholar
  28. Marcus, S. M. (1976).Perceptual centres. Unpublished doctoral dissertation, Cambridge University.Google Scholar
  29. Massaro, D. W. (1970). Preperceptual auditory images.Journal of Experimental Psychology,85, 411–417.CrossRefPubMedGoogle Scholar
  30. Massaro, D. W. (1990). An information-processing analysis of perception and action. In O. Neumann & W. Prinz (Eds.),Relationships between perception and action: Current approaches (pp. 133–166). Berlin: Springer-Verlag.Google Scholar
  31. Massaro, D. W., &Idson, W. L. (1978). Target-mask similarity in backward recognition masking of perceived tone duration.Perception & Psychophysics,24, 225–236.CrossRefGoogle Scholar
  32. Mates, J. (1991). Extending the model of self-paced periodic responding: Comment on Vos and Ellermann (1989).Journal of Experimental Psychology: Human Perception & Performance,17, 877–879.CrossRefGoogle Scholar
  33. Mates, J. (1994a). A model of synchronization of motor acts to a stimulus sequence: I. Timing and error corrections.Biological Cybernetics,70, 463–473.CrossRefPubMedGoogle Scholar
  34. Mates, J. (1994b). A model of synchronization of motor acts to a stimulus sequence: II. Stability analysis, error estimation and simulations.Biological Cybernetics,70, 475–484.CrossRefPubMedGoogle Scholar
  35. Mates, J., Radil, T., &Pöppel, E. (1992). Cooperative tapping: Time control under different feedback conditions.Perception & Psychophysics,52, 691–704.CrossRefGoogle Scholar
  36. Meltzoff, A. N., Kuhl, P. K., &Moore, M. K. (1991). Perception, representation, and the control of action in newborns and young infants: Towards a new synthesis. In M. J. Weiss & P. R. Zelazo (Eds.),Newborn attention: Biological constraints and the influence of experience (pp. 377–411). Norwood, NJ: Ablex.Google Scholar
  37. Morton, J., Marcus, S. M., &Frankish, C. (1976). Perceptual centers (P-centers).Psychological Review,83, 405–408.CrossRefGoogle Scholar
  38. Najenson, T., Ron, S., &Behroozi, K. (1989). Temporal characteristics of tapping responses in healthy subjects and in patients who sustained cerebrovascular accident.Brain, Behavior & Evolution,33, 175–178.CrossRefGoogle Scholar
  39. Oléron, G. (1961). Attitude et utilisation des repères dans la synchronisation de stimuli périodiques [The role and the use of reference points in the synchronization of periodic stimuli].L’Année Psychologique,61, 59–78.CrossRefPubMedGoogle Scholar
  40. Paillard, J. (1949). Quelques données psychophysiologiques relatives au déclenchement de la commande motrice [Some psychophysiological data relating to the triggering of motor commands].L’Année Psychologique,48, 28–47.Google Scholar
  41. Pastore, R. E., Harris, L. B., &Goldstein, L. (1980). Auditory forward and backward masking interaction.Perception & Psychophysics,28, 547–549.CrossRefGoogle Scholar
  42. Pattee, H. H. (1974). Discrete and continuous processes in computers and brains. In M. Conrad, W. Guttinger, & M. D. Cin (Eds.),Physics and mathematics of the nervous system (pp. 128–148). New York: Springer-Verlag.Google Scholar
  43. Peters, M. (1989). The relationship between variability of intertap intervals and interval duration.Psychological Research,51, 38–42.CrossRefGoogle Scholar
  44. Pöppel, E., Müller, U., & Mates, J. (1990, October).Temporal constraints in synchronization of motor responses to a regular sequence of stimuli. Paper presented at the annual meeting of the Society for Neuroscience, St. Louis.Google Scholar
  45. Povel, D. J. (1981). Internal representation of simple temporal patterns.Journal of Experimental Psychology: Human Perception & Performance,7, 3–18.CrossRefGoogle Scholar
  46. Prinz, W. (1990). A common coding approach to perception and action. In O. Neumann & W. Prinz (Eds.),Relationships between perception and action: Current approaches (pp. 167–201). Berlin: Springer-Verlag.Google Scholar
  47. Prinz, W. (1992). Why don’t we perceive our brain states?European Journal of Cognitive Psychology,4, 1–20.CrossRefGoogle Scholar
  48. Rutschmann, J., &Link, R. (1964). Perception of temporal order of stimuli differing in sense mode and simple reaction time.Perceptual & Motor Skills,18, 345–352.Google Scholar
  49. Sanders, A. F. (1980). Stage analysis of reaction processes. In G. E. Stelmach & J. Requin (Eds.),Tutorials in motor behavior (pp. 331–354). Amsterdam: North-Holland.CrossRefGoogle Scholar
  50. Schulze, H.-H. (1992). The error correction model for the tracking of a random metronome: Statistical properties and an empirical test. In F. Macar, V. Pouthas, & W. J. Friedman (Eds.),Time, action and cognition (pp. 275–286). Dordrecht: Kluwer.Google Scholar
  51. Schütte, H. (1978a). Ein Funktionsschema für die Wahrnehmung eines gleichmäßigen Rhythmus in Schallimpulsen [A functional scheme for perceiving a regular rhythm in auditory impulses].Biological Cybernetics,29, 49–55.CrossRefPubMedGoogle Scholar
  52. Schütte, H. (1978b). Subjektiv gleichmäßiger Rhythmus: Ein Beitrag zur zeitlichen Wahrnehmung von Schallereignissen [Subjective regular rhythm: A contribution to the temporal perception of auditory events].Acustica,41, 197–206.Google Scholar
  53. Shibasaki, H., Barrett, G., Halliday, E., &Halliday, A. M. (1981). Cortical potentials associated with voluntary foot movement in man.Electroencephalography & Clinical Neurophysiology,52, 507–516.CrossRefGoogle Scholar
  54. Sternberg, S., &Knoll, R. L. (1973). The perception of temporal order: Fundamental issues and a general model. In S. Kornblum (Ed.),Attention and performance IV (pp. 629–685). New York: Academic Press.Google Scholar
  55. Stevens, L. T. (1886). On the time sense.Mind,11, 393–404.CrossRefGoogle Scholar
  56. Stone, S. A. (1926). Prior entry in the auditory-tactual complication.American Journal of Psychology,37, 284–287.CrossRefGoogle Scholar
  57. Summers, J. J., Bell, R., &Burns, B. D. (1989). Perceptual and motor factors in the imitation of simple temporal patterns.Psychological Research,50, 23–27.CrossRefGoogle Scholar
  58. Terhardt, E., &Schütte, H. (1976). Akustische Rhythmus-Wahrnehmung: Subjektive Gleichmäßigkeit [Acoustical rhythm perception: Subjective regularity].Acustica,35, 122–126.Google Scholar
  59. Truman, G., &Hammond, G. R. (1990). Temporal regularity of tapping by the left and right hands in timed and untimed finger tapping.Journal of Motor Behavior,22, 521–535.PubMedGoogle Scholar
  60. Vorberg, D., &Hambuch, R. (1978). On the temporal control of rhythmic performance. In J. Requin (Ed.),Attention and performance VII (pp. 535–555). Hillsdale, NJ: Erlbaum.Google Scholar
  61. Vorberg, D., &Hambuch, R. (1984). Timing of two-handed rhythmic performance. In J. Gibbon & L. Allan (Eds.),Timing and time perception (Annals of the New York Academy of Sciences, Vol. 423, pp. 390–406). New York: New York Academy of Sciences.Google Scholar
  62. Vorberg, D., &Wing, A. (1993). Modelle für die Variabilität und Abhängigkeit bei der zeitlichen Steuerung [Modeling variability and dependence in timing]. In H. Heuer & S. Keele (Eds.),Enzyklopädie der Psychologie, Serie Kognition: Band III. Psychomotorik (pp. 223–320). Göttingen: Hogrefe.Google Scholar
  63. Vos, P. G., &Ellermann, H. H. (1989). Precision and accuracy in the reproduction of simple tone sequences.Journal of Experimental Psychology: Human Perception & Performance,15, 179–187.CrossRefGoogle Scholar
  64. Vos, P. G., &Helsper, E. L. (1992). Tracking simple rhythms: On-beat versus off-beat performance. In F. Macar, V. Pouthas, & W. J. Friedman (Eds.),Time, action and cognition (pp. 287–299). Dordrecht: Kluwer.Google Scholar
  65. Vos, P. G., Helsper, E. L., &van Krysbergen, N. (1992). Tracking simple rhythms under pseudo-synchronization conditions. InProceedings of the Fourth Rhythm Workshop: Rhythm Perception and Production (pp. 37–42). Bourges: CNRS.Google Scholar
  66. Welford, A. T. (1968).Fundamentals of skill. London: Methuen.Google Scholar
  67. Welford, A. T. (1980).Reaction times. London: Academic Press.Google Scholar
  68. Wing, A. M. (1977). Perturbations of auditory feedback delay and the timing of movement.Journal of Experimental Psychology: Human Perception & Performance,3, 175–186.CrossRefGoogle Scholar
  69. Wing, A. M. (1982). Timing and co-ordination of repetitive bimanual movements.Quarterly Journal of Experimental Psychology,37A, 339–348.Google Scholar
  70. Wing, A. M., &Kristofferson, A. B. (1973a). Response delays and the timing of discrete motor responses.Perception & Psychophysics,14, 5–12.CrossRefGoogle Scholar
  71. Wing, A. M., &Kristofferson, A. B. (1973b). The timing of interresponse intervals.Perception & Psychophysics,13, 455–460.Google Scholar
  72. Woodrow, H. (1932). The effect of rate of sequence upon the accuracy of synchronization.Journal of Experimental Psychology,15, 357–379.CrossRefGoogle Scholar
  73. Yamanishi, J., Kawato, M., &Suzuki, R. (1979). Studies on human finger tapping neural networks by phase transition curves.Biological Cybernetics,33, 199–208.CrossRefPubMedGoogle Scholar
  74. Yamanishi, J., Kawato, M., &Suzuki, R. (1980). Two coupled oscillators as a model for the coordinated finger tapping by both hands.Biological Cybernetics,37, 219–225.CrossRefPubMedGoogle Scholar

Copyright information

© Psychonomic Society, Inc. 1995

Authors and Affiliations

  1. 1.Max-Planck-Institut für psychologische ForschungMünchenGermany
  2. 2.Ludwig-Maximilians-UniversitätMunichGermany

Personalised recommendations