Perception & Psychophysics

, Volume 3, Issue 4, pp 265–274 | Cite as

Depth, size and distance in stereoscopic vision

  • J. M. Foley


Evidence is presented to show that in stereoscopic vision a constant ratio of perceived size to perceived distance corresponds to a constant visual angle (the size-distance invariance hypothesis). The functions relating the size/ distance ratio to visual angle and the depth/distance ratio to disparity are determined for three as using the methods of magnitude estimation and magnitude production. The results for each a may be represented by power functions, the depth/ distance function having the higher exponent. These scales are used to predict the outcome of an experiment in which depth is matched to size. The agreement of predictions with results is good for the combined data of the group, but significant deviations occur from curves predicted for individual as. An experiment in which an oblique line is matched to a frontal extent yields data consistent with Luneburg’s hypothesis that the intrinsic geometry of visual space is non-Euclidean. The indicated curvature is negative for two as and varying from positive to negative for the third.


  1. Bellman, R. Functional equations. In D. Luce, R. Bush. & E. Galanter (Eds.),Handbook of mathematical psychology, Vol. 3. New York: Wiley, 1965. Pp. 487–513.Google Scholar
  2. Blank, A. A. Analysis of experiments in binocular space perception.J. opt. Soc. Amer., 1958, 48, 911–925.CrossRefGoogle Scholar
  3. Blank, A. A. The Luneburg theory of binocular space perception. In S. Koch (Ed.),Psychology: A study of a science. New York: McGraw-Hill, 1959. Pp. 395–426.Google Scholar
  4. Foley, J. M. Desarguesian property in visual space.J. opt. Soc. Amer., 1964, 54, 684–692.CrossRefGoogle Scholar
  5. Foley, J. M. Visual space: A scale of perceived relative direction.Proc. Amer. Psychol. Assn., 1965, 1, 49–50.Google Scholar
  6. Foley, J. M. Locus of perceived equidistance as a function of viewing distance.J. Opt Soc Amer., 1966, 56, 822–827.CrossRefGoogle Scholar
  7. Foley, J. M. Binocular disparity and perceived relative distance: An examination of two bypotheses.Vis. Res., 1967a, 7, 655–670.CrossRefPubMedGoogle Scholar
  8. Foley, J. M. Disparity increase with convergence for constant perceptual criteria.Percept. & Psychophys., 1967b, 2, 605–608.CrossRefGoogle Scholar
  9. Gamer, W. R., & Creelman, C. D. Problems and metbods of psvchological scaling. In H. Helson & W. Bevan (Eds.),Contemporary approaches to psychology. Van Nostrand, 1967. Pp. 1–34.Google Scholar
  10. Graham, C. H. Who makes the measurements-the subject or the experimenter?J. opt. Soc. Amer., 1966, 56, 1408–1409.CrossRefGoogle Scholar
  11. Gogel, W. C. The effect of convergence and angular size upon the computed value of a hypothetical observer constant in binocular vision. U. S. Army Medical Research Laboratory, Fort Knox, Kentucky, Report No. 372, 1958.Google Scholar
  12. Gogel, W. C. Perceived frontal size as a determiner of perceived binocular depth.J. Psychol., 1960a, 50, 119–131.CrossRefGoogle Scholar
  13. Gogel, W. C. The perception of shape from binocular disparity cues.J. Psychol., 1960b, 50, 179–192.CrossRefGoogle Scholar
  14. Gogel, W. C. The perception of a depth interval with binocular disparity cues.J. Psychol., 1960c, 50, 257–269.CrossRefGoogle Scholar
  15. Gogel, W. C. Convergence as a cue to absolute distance.J. Psychol., 1961, 52, 287–301.CrossRefGoogle Scholar
  16. Gogel, W. C. Perception of depth from binocular disparity.J. exp. Psychol., 1964a, 67, 379–386.CrossRefPubMedGoogle Scholar
  17. Gogel, W. C. Visual perception of spatial extent.J. opt. Soc. Amer., 1964b, 54, 411–416.CrossRefGoogle Scholar
  18. Gogel, W. C., Wist, E. R., &Harker, G. S. A test of the invariance of the ratio of perceived size to perceived distance.Amer. J. Psychol., 1963, 76, 537–553.CrossRefPubMedGoogle Scholar
  19. Heinemann, K. G., Tulving, K., &Nachmias, J. The effect of oculomotor adjustments on apparent size.Amer. J. Psychol., 1959, 72, 32–45.CrossRefGoogle Scholar
  20. Indow, T., Inoue, K., &Matsushima, K. An experimental study of the Luneburg the ory of binocular space perception (2). The alley experiments.Jap. Psychol, Res., 1962, 4, 17–24.Google Scholar
  21. Luneburg, R. K. The metric of binocular visual space.J. opt. Soc. Amer., 1950, 40, 627–642.CrossRefGoogle Scholar
  22. Luneburg, R. K. Mathematical analysis of binocular vision. Princeton University Press. 1947.Google Scholar
  23. Ogle, K. N. Researches in binocular rision, Saunders. 1950.Google Scholar
  24. Over, R. Size and distance judgments under reduction conditions.Austral. J. Psychol., 1960, 12, 162–168.CrossRefGoogle Scholar
  25. Rump, E. K. The relationship between perceived size and perceived distance.Brit. J. Psychol., 1961, 52, 111–124.PubMedGoogle Scholar
  26. Shipley, T. An experimental study of the frontal reference curves of binocular visual space.Doc. Opthal., 1959, 15, 321–350.CrossRefGoogle Scholar
  27. Stevens, S. S. Matching functions between loudness and ten other continua.Percept. & Psychophys., 1966, 1, 5–8.CrossRefGoogle Scholar
  28. Stevens, S. S. Concerning the measurement of brightness.J. opt. Soc. Amer., 1966, 56, 1135–1136.CrossRefGoogle Scholar
  29. Stevens, S. S., &Guirao, M. Loudness, reciprocality, and partition scales.J. Acoust. Soc. Amer., 1962, 34, 1466–1471.CrossRefGoogle Scholar
  30. Zajaczkowska, A. Experimental test of Luneburg’s theory. Horopter and alley experiments.J. opt. Soc. Amer., 1956, 46, 514–527.CrossRefGoogle Scholar

Copyright information

© Psychonomic Society, Inc. 1968

Authors and Affiliations

  • J. M. Foley
    • 1
  1. 1.University of CaliforniaSanta Barbara

Personalised recommendations