Perception & Psychophysics

, Volume 62, Issue 7, pp 1383–1393 | Cite as

Neural representation of consciously imperceptible speech sound differences

Article
  • 258 Downloads

Abstract

The concept of subliminal perception has been a subject of interest and controversy for decades. Of interest in the present investigation was whether a neurophysiologic index of stimulus change could be elicited to speech sound contrasts that were consciously indiscriminable. The stimuli were chosen on the basis of each individual subject’s discrimination threshold. The speech stimuli (which varied along anF3 onset frequency continuum from /da/ to /ga/) were synthesized so that the acoustical properties of the stimuli could be tightly controlled. Subthreshold and suprathreshold stimuli were chosen on the basis of behavioral ability demonstrated during psychophysical testing. A significant neural representation of stimulus change, reflected by the mismatch negativity response, was obtained in all but 1 subject in response to subthreshold stimuli. Grand average responses differed significantly from responses obtained in a control condition consisting of physiologic responses elicited by physically identical stimuli. Furthermore, responses to suprathreshold stimuli (close to threshold) did not differ significantly from subthreshold responses with respect to latency, amplitude, or area. These results suggest that neural representation of consciously imperceptible stimulus differences occurs and that this representation occurs at a preattentive level.

References

  1. Aaltonen, O., Niemj, P., Nyrke, T., &Tuhkanen, M. (1987). Event-related brain potentials and the perception of a phonetic continuum.Biological Psychology,24, 197–207.CrossRefPubMedGoogle Scholar
  2. Alho, K. (1995). Cerebral generators of mismatch negativity (MMN) and its magnetic counterpart (MMNm) elicited by sound changes.Ear & Hearing,16, 38–51.CrossRefGoogle Scholar
  3. Borgeat, F., Boissonneault, J., &Chaloult, L. (1989). Psychophysical responses to subliminal auditory suggestions for activation.Perceptual & Motor Skills,69, 947–953.Google Scholar
  4. Bradlow, A. R., Pisoni, D. B., Akahane-Yamada, R., &Tohkura, Y. (1997). Training Japanese listeners to identify English Irl and III: IV. Some effects of perceptual learning on speech production.Journal of the Acoustical Society of America,101, 2299–2310.CrossRefPubMedGoogle Scholar
  5. Carrell, T. D. Bradlow, A. R., Nicol, T. G., Koch, D. B., &Kraus, N. (1999). Interactive software for evaluating auditory discrimination.Ear & Hearing,20, 175–176.CrossRefGoogle Scholar
  6. Chakalis, E., &Lowe, G. (1992). Positive effects of subliminal stimulation on memory.Perceptual & Motor Skills,74, 956–958.CrossRefGoogle Scholar
  7. Comerchero, M. D., &Polich, J. (1998). P3a, perceptual distinctiveness, and stimulus modality.Brain Research: Cognitive Brain Research,7, 41–48.CrossRefPubMedGoogle Scholar
  8. Csépe, V., Karmos, G., &Molnar, M. (1987). Evoked potential correlates of stimulus deviance during wakefulness and sleep in the catanimal model of mismatch negativity.Electroencephalography & Clinical Neurophysiology,66, 571–578.CrossRefGoogle Scholar
  9. Dixon, N. F. (1981).Preconsciousprocessing. New York: Wiley.Google Scholar
  10. Escera, C, Alho, K., Winkler, I., &Näätänen, R. (1998). Neural mechanisms of involuntary attention to acoustic novelty and change.Journal of Cognitive Neuroscience,10, 590–604.CrossRefPubMedGoogle Scholar
  11. Escera, C., &Grau, C. (1996). Short-term replicability of the mismatch negativity.Electroencephalography & Clinical Neurophysiology,100, 549–554.CrossRefGoogle Scholar
  12. Flege, J. E. (1995). Two procedures for training a novel second language phonetic contrast.Applied Psycholinguistics,16, 425–442.Google Scholar
  13. Fried, I., Macdonald, K. A., &Wilson, C. L. (1997). Single neuron activity in human hippocampus and amygdala during recognition of faces and objects.Neuron,18, 753–765.CrossRefPubMedGoogle Scholar
  14. Frodl-Bauch, T., Kathmann, N., Moller, H. J., &Hegerl, U. (1997). Dipole localization and test-retest reliability of frequency and duration mismatch negativity generator processes.Brain Topography,10, 3–8.CrossRefPubMedGoogle Scholar
  15. Godfrey, J. J., Syrdal-Lasky, A. K., Millay, K. K., &Knox, C. M. (1981). Performance of dyslexic children on speech perception tests.Journal of Experimental Child Psychology,32, 401–424.CrossRefPubMedGoogle Scholar
  16. Hoffman, J. E., Houck, M. R., Macmillan, F. W., III, Simons, R. F., &Oatman, L. (1985). Event-related potentials elicited by automatic targets: A dual-task analysis.Journal of Experimental Psychology: Human Perception & Performance,11, 50–61.CrossRefGoogle Scholar
  17. Holender, D. (1986). Semantic activation without conscious identification in dichotic listening, parafoveal vision, and visual masking: A survey and appraisal.Behavioral & Brain Sciences,9, 1–66.CrossRefGoogle Scholar
  18. Jamieson, D. G., &Morosan, D. E. (1986). Training non-native speech contrasts in adults: Acquisition of the English ∂-θ/ contrast by francophones.Perception & Psychophysics,40, 205–215.CrossRefGoogle Scholar
  19. Jasper, H. H. (1958). The ten-twenty electrode system of the international federation.Electroencephalography & Clinical Neurophysiology,15, 115–117.Google Scholar
  20. Javitt, D. C, Steinschneider, M., Schroeder, C. E., Vaughan, H. G., Jr., &Arezzo, J. C. (1994). Detection of stimulus deviance within primate primary auditory cortex: Intracortical mechanisms of mismatch negativity (MMN) generation.Brain Research,667, 192–200.CrossRefPubMedGoogle Scholar
  21. Kane, N. M., Curry, S. H., Rowlands, C. A., Manara, A. R., Lewis, T., Moss, T., Cummins, B. H., &Butler, S. R. (1996). Eventrelated potentials: Neurophysiological tools for predicting emergence and early outcome from traumatic coma.Intensive Care Medicine,22, 39–46.CrossRefPubMedGoogle Scholar
  22. Kaukoranta, E., Sams, M., Hari, R., Hämäläinen, M., &Näätänen, R. (1989). Reactions of human auditory cortex to changes in tone duration: Indirect evidence for duration specific neurons.Hearing Research,41, 15–22.CrossRefPubMedGoogle Scholar
  23. Klatt, D. (1980). Software for cascade/parallel formant synthesizer.Journal of the Acoustical Society of America,67, 971–995.CrossRefGoogle Scholar
  24. Kotze, H. F., &Moller, A. T. (1990). Effect of auditory subliminal stimulation on GSR.Psychological Reports,67, 931–934.CrossRefPubMedGoogle Scholar
  25. Kraus, N., Koch, D. B., Mcgee, T. J., Nicol, T. G., &Cunningham, J. (1999). Speech-sound discrimination in school-age children: Psychophysical and neurophysiologic measures.Journal of Speech, Language, & Hearing Research,42, 1042–1060.Google Scholar
  26. Kraus, N., Mcgee, T. J., Carrell, T. D., King, C, Littman, T., &Nicol, T. G. (1994). Discrimination of speech-like contrasts in the auditory thalamus and cortex.Journal of the Acoustical Society of America,96, 2758–2768.CrossRefPubMedGoogle Scholar
  27. Kraus, N., Mcgee, T. J., Carrell, T. D., &Sharma, A. (1995). Neurophysiologic bases of speech discrimination.Ear & Hearing,16, 19–37.CrossRefGoogle Scholar
  28. Kraus, N., Mcgee, T. J., Carrell, T. D., Zecker, S. G., Nicol, T. G., &Koch, D. B. (1996). Auditory neurophysiologic responses and discrimination deficits in children with learning problems.Science,273, 971–973.CrossRefPubMedGoogle Scholar
  29. Kraus, N., Mcgee, T. J., Littman, T., Nicoi, T. G., &King, C. (1994). Nonprimary auditory thalamic representation of acoustic change.Journal of Neurophysiology,72, 1270–1277.PubMedGoogle Scholar
  30. Kraus, N., Mcgee, T. J., Micro, A., Sharma, A., Carrell, T. D., &Nicol, T. G. (1993). Mismatch negativity in school-age children to speech stimuli that are just perceptibly different.Electroencephalography & Clinical Neurophysiology,88, 123–130.CrossRefGoogle Scholar
  31. Kraus, N., Mcgee, T. J., Sharma, A., Carrell, T. D., &Nicol, T. G. (1992). Mismatch negativity event-related potential elicited by speech stimuli.Ear & Hearing,13, 158–164.CrossRefGoogle Scholar
  32. Lang, W., Lang, M., Heise, B., Deecke, L., &Kornhuber, H. H. (1984). Brain potentials related to voluntary hand tracking, motivation and attention.Human Neurobiology,3, 235–240.PubMedGoogle Scholar
  33. Logan, J., &Pruitt, J. (1995). Methodological issues in training listeners to perceive non-native phonemes. In W. Strange (Ed.),Speech perception and linguistic experience: Issues in cross-language speech research (pp. 351–378). Timonium, MD: York Press.Google Scholar
  34. Macmillan, N. A., &Creelman, C. D. (1991).Detection theory: A user’s guide. Cambridge: Cambridge University Press.Google Scholar
  35. Mcgee, T. J., Kraus, N., &Nicol, T. G. (1997). Is it really a mismatch negativity? An assessment of methods for determining response validity in individual subjects.Electroencephalography & Clinical Neurophysiology,104, 359–368.CrossRefGoogle Scholar
  36. Näätänen, R. (1990). The role of attention in auditory information processing as revealed by event-related brain potentials and other brain measures of cognitive function.Behavioral & Brain Sciences,13, 201–233.Google Scholar
  37. Näätänen, R. (1991). Mismatch negativity outside a strong attentional focus: A commentary on Woldorff et al.Psychophysiology,28, 478–484.CrossRefPubMedGoogle Scholar
  38. Näätänen, R., Gaillard, A. W., &Mantysalo, S. (1978). Early selective attention effect on evoked potential reinterpreted.Acta Psychologie,42, 313–329.CrossRefGoogle Scholar
  39. Näätänen, R., Paavilainen, P., Alho, K., Reinikainen, K., &Sams, M. (1989). Do event-related potentials reveal the mechanism of the auditory sensory memory in the human brain?Neuroscience Letters,98, 217–221.CrossRefPubMedGoogle Scholar
  40. Näätänen, R., &Picton, T. W. (1987). The N1 wave of the human electric and magnetic response to sound: A review and an analysis of the component structure.Psychophysiology,24, 375–425.CrossRefPubMedGoogle Scholar
  41. Novak, G., Ritter, W., Vaughan, H. G., Jr., &Wiznitzer, M. L. (1990). Differentiation of negative event-related potentials in an auditory discrimination task.Electroencephalography & Clinical Neurophysiology,73, 255–275.CrossRefGoogle Scholar
  42. Pekkonen, E., Rinne, T., &Näätänen, R. (1995). Variability and replicability of the mismatch negativity.Electroencephalography & Clinical Neurophysiology,96, 546–554.CrossRefGoogle Scholar
  43. Polich, J. (1988). Bifurcated P300 peaks: P3a and P3b revisited?Journal of Clinical Neurophysiology,5, 287–294.CrossRefPubMedGoogle Scholar
  44. Sams, M., Kaukoranta, E., Hämäläinen, M., &Näätänen, R. (1991). Cortical activity elicited by changes in auditory stimuli: Different sources for the magnetic N100m and mismatch responses.Psychophysiology,28, 21–29.CrossRefPubMedGoogle Scholar
  45. Sams, M., Paavilainen, P., Alho, K., &Näätänen, R. (1985). Auditory frequency discrimination and event-related potentials.Electroencephalography & Clinical Neurophysiology,62, 437–448.CrossRefGoogle Scholar
  46. Sharma, A., Kraus, N., Mcgee, T. J., Carrell, T. D., &Nicol, T. G. (1993). Acoustic versus phonetic representation of speech as reflected by the mismatch negativity event-related potential.Electroencephalography & Clinical Neurophysiology,88, 64–71.CrossRefGoogle Scholar
  47. Skrandies, W., &Jedynak, A. (1999). Learning to see 3-D: Psychophysics and brain electrical activity.NeuroReport,10, 249–253.CrossRefPubMedGoogle Scholar
  48. Squires, N. K., Squires, K. C., &Hillyard, S. A. (1975). Two varieties of long-latency positive waves evoked by unpredictable auditory stimuli in man.Electroencephalographv & Clinical Neurophysiology,38, 387–401.CrossRefGoogle Scholar
  49. Strange, W., &Dittmann, S. (1984). Effects of discrimination training on the perception of /r/-/l/ by Japanese adults learning English.Perception & Psychophysics,36, 131–145.CrossRefGoogle Scholar
  50. Tallal, P., &Stark, R. E. (1981). Speech acoustic-cue discrimination abilities of normally developing and language-impaired children.Journal of the Acoustical Society of America,69, 568–574.CrossRefPubMedGoogle Scholar
  51. Taylor, M.M., &Creelman, C. D. (1967). PEST: Efficient estimates on probability functions.Journal of the Acoustical Society of America,41, 782–787.CrossRefGoogle Scholar
  52. Tervaniemi, M., Lehtokoski, A., Sinkkonen, J., Virtanen, J., Ilmoniemi, R. J., &Näätänen, R. (1999) Test-retest reliability of mismatch negativity for duration, frequency and intensity changes.Clinical Neurophysiology,110, 1388–1393.CrossRefPubMedGoogle Scholar
  53. Tiitinen, H., May, P., Reinikainen, K., &Näätänen, R. (1994). Attentive novelty detection in humans is governed by pre-attentive sensory memory.Nature,372, 90–92.CrossRefPubMedGoogle Scholar
  54. Tremblay, K., Kraus, N., Carrell, T. D., &McGee, T. (1997). Central auditory system plasticity: Generalization to novel stimuli following listening training.Journal of the Acoustical Society of Amerca,102, 3762–3773.CrossRefGoogle Scholar
  55. Tremblay, K., Kraus, N., &McGee, T. (1998). The time course of auditory perceptual learning: Neurophysiologic changes during speechsound training.NeuroReport,9, 3557–3560.CrossRefPubMedGoogle Scholar
  56. Werker, J. F., &Tees, R. C. (1987). Speech perception in severely disabled and average reading children.Canadian Journal of Psychology,41, 48–61.CrossRefPubMedGoogle Scholar

Copyright information

© Psychonomic Society, Inc. 2000

Authors and Affiliations

  1. 1.Auditory Neuroscience LaboratoryNorthwestern UniversityEvanston

Personalised recommendations