Advertisement

Perception & Psychophysics

, Volume 60, Issue 1, pp 1–23 | Cite as

Withdrawing attention at little or no cost: Detection and discrimination tasks

  • Jochen BraunEmail author
  • Bela Julesz
Article

Abstract

We used a concurrent-task paradigm to investigate the attentional cost of simple visual tasks. As in earlier studies, we found that detecting a unique orientation in an array of oriented elements (“pop-out”) carries little or no attentional cost. Surprisingly, this is true at all levels of performance and holds even when pop-out is barely discriminable. We discuss this finding in the context of our previous report that the attentional cost of stimulus detection is strongly influenced by the presence and nature of other stimuli in the display (Braun, 1994b). For discrimination tasks, we obtained a similarly mixed outcome: Discrimination of letter shape carried a high attentional cost whereas discrimination of color and orientation did not. Taken together, these findings lead us to modify our earlier position on the attentional costs of detection and discrimination tasks (Sagi & Julesz, 1985). We now believe that observers enjoy a significant degree of “ambient” visual awareness outside the focus of attention, permitting them to both detect and discriminate certain visual information. We hypothesize that the information in question is selected by a competition for saliency at the level of early vision.

Keywords

Visual Search Stimulus Onset Asynchrony Localization Task Probe Task Early Vision 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Allman, J. M., Miezin, F., &McGuinness, E. (1985). Direction- and velocity-specific responses from beyond the classical receptive field in the middle temporal area (MT).Perception,14, 105–126.CrossRefPubMedGoogle Scholar
  2. Allport, D. A. (1980). Attention and performance. In G. Claxton (Ed.),Cognitive psychology: New directions (pp. 43–67). London: Routledge & Kegan Paul.Google Scholar
  3. Bashinski, H. S., &Bacharach, V. R. (1980). Enhancement of perceptual sensitivity as the result of selectively attending to spatial locations.Perception & Psychophysics,28, 241–248.CrossRefGoogle Scholar
  4. Ben-Av, M. B., Sagi, D., &Braun, J. (1992). Visual attention and perceptual grouping.Perception & Psychophysics,52, 277–294.CrossRefGoogle Scholar
  5. Bergen, J., &Julesz, B. (1983). Parallel versus serial processing in rapid pattern discrimination.Nature,303, 696–698.CrossRefPubMedGoogle Scholar
  6. Bisiach, E., &Vallar, G. (1988). Hemineglect in humans. In F. Boller & J. Grafman (Eds.),Handbook of neuropsychology (Vol. 1, pp. 195–222). Amsterdam: Elsevier.Google Scholar
  7. Bonnel, A.-M, & Miller, J. (1994). Attentional effects on concurrent psychophysical discriminations: Investigations of a sample size model.Perception & Psychophysics,55, 162–179.Google Scholar
  8. Bonnel, A.-M., Possamai, C. A., &Schmitt, M. (1987). Early modulations of visual input: A study of attentional strategies.Quarterly Journal of Experimental Psychology,39A, 757–776.Google Scholar
  9. Bonnel, A.-M., Stein, J.-F., &Bertucci, P. (1994). Does attention modulate the perception of luminance changes?Quarterly Journal of Experimental Psychology,44A, 601–626.Google Scholar
  10. Braun, J. (1994a). Shape-from-shading is independent of visual attention and may be a “texton.”Spatial Vision,7, 311–322.CrossRefGoogle Scholar
  11. Braun, J. (1994b). Visual search among items of different salience: Removal of visual attention mimics a lesion in extrastriate area V4.Journal of Neuroscience,14, 554–567.PubMedGoogle Scholar
  12. Braun, J. (1996). [Unpublished raw data.]Google Scholar
  13. Braun, J., & Julesz, B. (1992, November).Early vision: Dichotomous or continuous? Paper presented at the annual meeting of the Psychonomic Society, St. Louis.Google Scholar
  14. Braun J., & Julesz, B. (1994, November).William James was right about “passive, involuntary, and effortless” attention. Paper presented at the annual meeting of the Psychonomic Society, St. Louis.Google Scholar
  15. Braun, J., &Koch, C. (1995). Stimulus competition as a mechanism of visual selection: Interaction between motion and orientation of contrasts.Investigative Ophthalmology & Visual Science,36(Suppl.), 3926.Google Scholar
  16. Braun, J., &Sagi, D. (1990). Vision outside the focus of attention.Perception & Psychophysics,48, 45–58.CrossRefGoogle Scholar
  17. Braun, J., &Sagi, D. (1991). Texture-based tasks are little affected by a second task which requires peripheral or central attentive fixation.Perception,20, 483–500.CrossRefPubMedGoogle Scholar
  18. Bravo, M. J., &Nakayama, K. (1992). The role of attention in different visual-search tasks.Perception & Psychophysics,51, 465–472.CrossRefGoogle Scholar
  19. Cheal, M., &Lyon, D. R. (1994). Allocation of attention in texture segregation, visual search, and location-precuing paradigms.Quarterly Journal of Experimental Psychology,47A, 49–70.Google Scholar
  20. Chelazzi, L., Miller, E. K., Duncan, J., &Desimone, R. (1993). A neural basis of visual search in inferior temporal cortex.Nature,363, 345–347.CrossRefPubMedGoogle Scholar
  21. Damasio, A. R. (1987). The brain binds entities and events by multiregional activation from convergence zones.Neural Computation,1, 123–132.CrossRefGoogle Scholar
  22. Desimone, R. (1992). Neural circuits for visual attention in the primate brain. In G. Carpenter & S. Grossberg (Eds.),Neural networks for vision & image processing (pp. 343–364). Cambridge, MA: MIT Press.Google Scholar
  23. Desimone, R., &Duncan, J. (1995). Neural mechanisms of selective visual attention.Annual Review of Neuroscience,18, 193–222.CrossRefPubMedGoogle Scholar
  24. Desimone, R., Schein, S. G., Moran, J., &Ungerleider, L. G. (1985). Contour, color and shape analysis beyond the striate cortex.Vision Research,25, 441–452.CrossRefPubMedGoogle Scholar
  25. Dick, M., Ullman, S., &Sagi, D. (1987). Parallel and serial processes in motion detection.Science,237, 400–402.CrossRefPubMedGoogle Scholar
  26. Downing, C. (1988). Expectancy and visual-spatial attention: Effects on perceptual quality.Journal of Experimental Psychology: Human Perception & Performance,14, 188–202.CrossRefGoogle Scholar
  27. Duncan, J. (1980a). The demonstration of capacity limitation.Cognitive Psychology,12, 75–96.CrossRefGoogle Scholar
  28. Duncan, J. (1980b). The locus of interference in the perception of simultaneous stimuli.Psychological Review,87, 272–300.CrossRefPubMedGoogle Scholar
  29. Duncan, J. (1984). Selective attention and the organization of visual information.Journal of Experimental Psychology: General,113, 501–517.CrossRefGoogle Scholar
  30. Duncan, J. (1993). Similarity between concurrent visual discriminations: Dimensions and objects.Perception & Psychophysics,54, 425–430.CrossRefGoogle Scholar
  31. Duncan, J., Ward, R., &Shapiro, K. (1994). Direct measurement of attentional dwell time in human vision.Nature,369, 313–315.CrossRefPubMedGoogle Scholar
  32. Enns, J. T., &Rensink, R. A. (1990). Influence of scene-based properties on visual search.Science,247, 721–723.CrossRefPubMedGoogle Scholar
  33. Eriksen, C. W., &St. James, J. D. (1986). Visual attention within and around the field of focal attention: A zoom lens model.Perception & Psychophysics,40, 225–240.CrossRefGoogle Scholar
  34. Felleman, D. J., &Van Essen, D. C. (1990). Distributed hierarchical processing in the primate cerebral cortex.Cerebral Cortex,1, 1–47.CrossRefGoogle Scholar
  35. Gallant, J. L., Connor, C. E., &Van Essen, D. C. (1994). Responses of visual cortical neurons in a monkey freely viewing natural scenes.Society for Neuroscience Abstracts,20, 838.Google Scholar
  36. Green, D., &Swets, J. (1966).Signal detectability and psychophysics. New York: Wiley.Google Scholar
  37. Gurnsey, R., &Browse, R. A. (1987). Micropattern properties and presentation conditions influencing visual texture discrimination.Perception & Psychophysics,41, 239–252.CrossRefGoogle Scholar
  38. Haenny, P. E., Maunsell, J. H. R., &Schiller, P. H. (1988). State dependent activity in monkey visual cortex: 2. Retinal and extraretinal factors in V4.Experimental Brain Research,69, 245–259.CrossRefGoogle Scholar
  39. Helmholtz, H. (1962).Treatise on physiological optics (J. P. C. South-all, Ed.). New York: Dover. Original work published 1850)Google Scholar
  40. James, W. (1981).The principles of psychology. Cambridge, MA: Harvard University Press. Original work published 1890)Google Scholar
  41. Ulesz, B. (1981). Textons, the elements of texture perception and their interactions.Nature,290, 91–97.CrossRefGoogle Scholar
  42. Julesz, B. (1984). Towards an axiomatic theory of preattentive vision. In G. M. Edelman, W. E. Gall, & W. M. Cowan (Eds.),Dynamic aspects of neocorticalfunction (pp. 585–612). Washington, DC: Neurosciences Research Foundation.Google Scholar
  43. Julesz, B. (1991). Early vision and focal attention.Review of Modern Physics,63, 735–772.CrossRefGoogle Scholar
  44. Kahneman, D. (1973).Attention and effort. Englewood Cliffs, NJ: Prentice-Hall.Google Scholar
  45. Karni, A., &Sagi, D. (1993). Later, but (almost) forever—The time course of learning a visual skill.Nature,365, 250–252.CrossRefPubMedGoogle Scholar
  46. Karni, A., Tanne, D., Rubenstein, B. S., Askenasy, J. J. M., &Sagi, D. (1994). Dependence on REM sleep of overnight improvement of a perceptual skill.Science,265, 679–682.CrossRefPubMedGoogle Scholar
  47. Kinsbourne, M. (1993). Orientational bias model of unilateral neglect: Evidence from attentional gradients within hemispace. In I. H. Robertson & J. C. Marshall (Eds.),Unilateral neglect: Clinical and experimental studies (pp. 63–86). Hillsdale, NJ: Erlbaum.Google Scholar
  48. Knierim, J. J., &Van Essen, D. C. (1992). Neuronal responses to static texture patterns in area VI of the alert macaque monkey.Journal of Neurophysiology,67, 961–980.PubMedGoogle Scholar
  49. Koch, C., &Ullman, S. (1985). Shifts in selective visual attention: Towards the underlying neural circuitry.Human Neurobiology,4, 219–227.PubMedGoogle Scholar
  50. Kröse, B., &Julesz, B. (1989). The control and speed of shifts of attention.Vision Research,29, 1607–1619.CrossRefPubMedGoogle Scholar
  51. Kwak, H., &Egeth, H. [E.] (1992). Consequences of allocating attention to locations and other attributes.Perception & Psychophysics,51, 455–464.CrossRefGoogle Scholar
  52. Laberge, D., &Brown, V. (1989). Theory of attentional operations in shape identification.Psychological Review,96, 101 -124.CrossRefGoogle Scholar
  53. MacMillan, N., &Creelman, C. (1991).Detection theory: A user’s guide. Cambridge: Cambridge University Press.Google Scholar
  54. Malik, J., &Perona, P. (1990). Preattentive texture discrimination with early vision mechanisms.Journal of the Optical Society of America A,7, 923–932.CrossRefGoogle Scholar
  55. Maunsell, J. H. R. (1995). The brain’s visual world—Representation of visual targets in cerebral cortex.Science,270, 764–769.CrossRefPubMedGoogle Scholar
  56. Miller, E. K., Gochin, P. M., &Gross, C. G. (1993). Suppression of visual responses of neurons in inferior temporal cortex of the awake macaque by addition of a second stimulus.Brain Research,616, 25–29.CrossRefPubMedGoogle Scholar
  57. Moore, C. M., Egeth, H., Berglan, L. R., &Luck, S. J. (1996). Are attentional dwell times inconsistent with serial visual search?Psychonomic Bulletin & Review,3, 360–365.CrossRefGoogle Scholar
  58. Moran, J., &Desimone, R. (1985). Selective attention gates visual processing in the extrastriate cortex.Science,229, 782–784.CrossRefPubMedGoogle Scholar
  59. Mordkoff, J. T., Yantis, S., &Egeth, H. E. (1990). Detecting conjunctions of color and form in parallel.Perception & Psychophysics,48, 157–168.CrossRefGoogle Scholar
  60. Motter, B. C. (1993). Focal attention produces spatially selective processing in visual cortical areas V1, V2, and V4 in the presence of competing stimuli.Journal of Neurophysiology,70, 909–919.PubMedGoogle Scholar
  61. Motter, B. C. (1994). Neural correlates of attentive selection for color or luminance in extrastriate area V4.Journal of Neuroscience,14, 2178–2189.PubMedGoogle Scholar
  62. Müller, H. J., &Findlay, J. M. (1987). Sensitivity and criterion effects in the spatial cuing of visual attention.Perception & Psychophysics,42, 383–399.Google Scholar
  63. Nakayama, K. (1991). The iconic bottleneck and the tenuous link between early visual processing and perception. In C. Blakemore (Ed.),Vision, coding and efficiency (pp. 411–422). Cambridge: Cambridge University Press.Google Scholar
  64. Nakayama, K., &Mackeben, M. (1989). Sustained and transient components of focal visual attention.Vision Research,29, 1631–1647.CrossRefPubMedGoogle Scholar
  65. Nakayama, K., &Silverman, G. H. (1986). Serial and parallel processing of visual feature conjunctions.Nature,320, 264–265.CrossRefPubMedGoogle Scholar
  66. Navon, D., &Gopher, D. (1979). On the economy of the human processing system.Psychological Review,86, 214–255.CrossRefGoogle Scholar
  67. Norman, D., &Bobrow, D. (1975). On data-limited and resource-limited processes.Cognitive Psychology,7, 44–64.CrossRefGoogle Scholar
  68. Nothdurft, H. C. (1990). Texton segregation by associated differences in global and local luminance distribution.Proceedings of the Royal Society London: Series B,239, 295–320.CrossRefGoogle Scholar
  69. Nothdurft, H. C. (1991). Texture segmentation and pop-out from orientation contrast.Vision Research,31, 1073–1078.CrossRefPubMedGoogle Scholar
  70. Pashler, H. (1987). Detecting conjunctions of color and form: Reassessing the serial search hypothesis.Perception & Psychophysics,41, 191–201.CrossRefGoogle Scholar
  71. Pashler, H. (1994). Dual-task interference in simple tasks—Data and theory.Psychology Bulletin,116, 220–244.CrossRefGoogle Scholar
  72. Press, W. A., Knierim, J. J., &Van Essen, D. C. (1994). Neuronal correlates of attention to texture patterns in macaque striate cortex.Society for Neuroscience Abstracts,20, 838.Google Scholar
  73. Press, W. H., Teukolsky, S., Vetterling, W., &Flannery, B. (1992).Numerical recipes in C: The art of scientific computing (2nd ed.). Cambridge: Cambridge University Press.Google Scholar
  74. Reynolds, J., Chelazzi, L., Luck, S., &Desimone, R. (1994). Sensory interactions and effects of selective spatial attention in macaque area V2.Society for Neuroscience Abstracts,20, 1054.Google Scholar
  75. Reynolds, J., Nicholas, J., Chelazzi, L., &Desimone, R. (1995). Spatial attention protects macaque V2 and V4 cells from the influence of non-attended stimuli.Society for Neuroscience Abstracts,21, 1759.Google Scholar
  76. Robinson, D. L., &Petersen, S. E. (1992). The pulvinar and visual salience.Trends in Neurosciences,15, 127–132.CrossRefPubMedGoogle Scholar
  77. Rubenstein, B., &Sagi, D. (1990). Spatial variability as a limiting factor in texture-discrimination tasks: Implications for performance asymmetries.Journal of the Optical Society of America A,7, 1632–1642.CrossRefGoogle Scholar
  78. Rummelhart, D., &McClelland, J. L. (1986).Parallel distributed processing: Explorations in the microstructure of cognition. Cambridge, MA: MIT Press.Google Scholar
  79. Sagi, D. (1990). Detection of an orientation singularity in Gabor textures: Effect of signal density and spatial frequency.Vision Research,30, 1377–1390.CrossRefPubMedGoogle Scholar
  80. Sagi, D., &Julesz, B. (1985). Where and what in vision.Science,228, 1217–1219.CrossRefPubMedGoogle Scholar
  81. Sagi, D., &Julesz, B. (1987). Short-range limitation on detection of feature differences.Spatial Vision,1, 39–49.CrossRefGoogle Scholar
  82. Sato, T. (1995). Interactions between two different visual stimuli in the receptive fields of inferior temporal neurons in macaques during matching behaviors.Experimental Brain Research,105, 209–219.Google Scholar
  83. Schiller, P. H., &Lee, K. (1991). The role of primate extrastriate area V4 in vision.Science,251, 1251–1253.CrossRefPubMedGoogle Scholar
  84. Shaw, M. L. (1984). Division of attention among spatial locations: A fundamental difference between detection of letters and detection of luminance increments. In H. Bouma & D. G. Bouwhuis (Eds.),Attention and performance X (pp. 109–121). London: Psychology Press.Google Scholar
  85. Sperling, G., &Dosher, B. (1986). Strategy and optimization in human information processing. In K. R. Boff, L. Kaufman, & J. P. Thomas (Eds.),Handbook of perception and human performance (pp. 1–65). New York: Wiley.Google Scholar
  86. Sperling, G., &Melchner, M. J. (1978). The attention operating characteristic: Some examples from visual search.Science,202, 315–318.CrossRefPubMedGoogle Scholar
  87. Spitzer, H., Desimone, R., &Moran, J. (1988). Increased attention enhances both behavioral and neural performance.Science,240, 338–340.CrossRefPubMedGoogle Scholar
  88. Sun, J. Y., &Perona, P. (1996). Preattentive perception of elementary 3-dimensional shapes.Vision Research,36, 2515–2529.CrossRefPubMedGoogle Scholar
  89. Treisman, A. (1988). Features and objects: The Fourteenth Bartlett Memorial Lecture.Quarterly Journal of Experimental Psychology,40A, 201–237.Google Scholar
  90. Treisman, A. (1993). The perception of features and objects. In A. Baddeley & L. Weiskrantz (Eds.),Attention: Selection, awareness, and control (pp. 1–35). Oxford: Oxford University Press, Clarendon Press.Google Scholar
  91. Treisman, A., &Gelade, G. (1980). A feature integration theory of attention.Cognitive Psychology,12, 97–136.CrossRefPubMedGoogle Scholar
  92. Treisman, A., &Gormican, S. (1988). Feature analysis in early vision: Evidence from search asymmetries.Psychological Review,12, 97–136.Google Scholar
  93. Treisman, A., &Souther, J. (1985). Search asymmetry: A diagnostic for preattentive processing of separable features.Journal of Experimental Psychology: General,114, 285–310.CrossRefGoogle Scholar
  94. Van Essen, D. C, & Gallant, J. L. (1994). Neural mechanisms of form and motion processing in the primate visual system.Neuron,13, 1–10.CrossRefPubMedGoogle Scholar
  95. Watt, R. (1991). Seeing texture.Cognitive Neuroscience,1, 137–139.Google Scholar
  96. Weibull, W. A. (1951). A statistical distribution function of wide applicability.Journal of Applied Mechanics,18, 292–297.Google Scholar
  97. Wen, J., Koch, C, & Braun, J. (1995). Visual tracking of multiple moving objects requires modality-specific attention.Investigative Ophthalmology & Visual Science,36(Suppl.), 4133.Google Scholar
  98. Wen, J., Koch, C, & Braun, J. (1996). Spatial vision outside the focus of attention.Investigative Ophthalmology & Visual Science,37 (Suppl.), 532.Google Scholar
  99. Williams, D. W., &Julesz, B. (1991). Filters versus textons in human and machine texture discrimination. In H. Wechsler (Ed.),Neural networks for human & machine perception (pp. 201–233). Orlando, FL: Academic Press.Google Scholar
  100. Wolfe, J. M. (1994). Guided search 2.0: A revised model of visual search.Psychonomic Bulletin & Review,1, 202–238.CrossRefGoogle Scholar
  101. Wolfe, J. M. (in press). Visual search. In H. Pashler (Ed.),Attention. London: University College London Press.Google Scholar

Copyright information

© Psychonomic Society, Inc. 1998

Authors and Affiliations

  1. 1.Division of Biology 139-74California Institute of TechnologyPasadena
  2. 2.Rutgers UniversityPiscataway

Personalised recommendations