Psychonomic Bulletin & Review

, Volume 2, Issue 3, pp 322–338 | Cite as

Environmental invariants in the representation of motion: Implied dynamics and representational momentum, gravity, friction, and centripetal force

  • Timothy L. Hubbard
Article

Abstract

Memory for the final position of a moving target is often shifted or displaced from the true final position of that target. Early studies of this memory shift focused on parallels between the momentum of the target and the momentum of the representation of the target and called this displacementrepresentational momentum, but many factors other than momentum contribute to the memory shift. A consideration of the empirical literature on representational momentum and related types of displacement suggests there are at least four different types of factors influencing the direction and magnitude of such memory shifts: stimulus characteristics (e.g., target direction, target velocity), implied dynamics and environmental invariants (e.g., implied momentum, gravity, friction, centripetal force), memory averaging of target and nontarget context (e.g., biases toward previous target locations or nontarget context), and observers’ expectations (both tacit and conscious) regarding future target motion and target/context interactions. Several theories purporting to account for representational momentum and related types of displacement are also considered.

References

  1. Algom, D. (1992). Memory psychophysics: An examination of its perceptual and cognitive prospects. In D. Algom (Ed.),Psychophysical approaches to cognition (pp. 441–513). New York: Elsevier, North-Holland.CrossRefGoogle Scholar
  2. Bertamini, M. (1993). Memory for position and dynamic representations.Memory & Cognition,21, 449–457.CrossRefGoogle Scholar
  3. Bharucha, J. J., &Hubbard, T. L. (1989).Anticipated collision along an oblique path: Effects on judged displacement. Unpublished manuscript.Google Scholar
  4. Cooke, N. J., &Breedin, S. D. (1994a). Constructing naive theories of motion on the fly.Memory & Cognition,22, 474–493.Google Scholar
  5. Cooke, N. J., &Breedin, S. D. (1994b). Naive misconceptions of Cooke and Breedin’s research: Response to Ranney.Memory & Cognition,22, 503–507.Google Scholar
  6. Faust, M. (1990).Representational momentum: A dual process perspective. Unpublished doctoral dissertation, University of Oregon, Eugene.Google Scholar
  7. Finke, R. A., &Freyd, J. J. (1985). Transformations of visual memory induced by implied motions of pattern elements.Journal of Experimental Psychology: Learning, Memory, & Cognition,11, 780–794.CrossRefGoogle Scholar
  8. Finke, R. A., &Freyd, J. J. (1989). Mental extrapolation and cognitive penetrability: Reply to Ranney and proposals for evaluative criteria.Journal of Experimental Psychology: General,118, 403–408.CrossRefGoogle Scholar
  9. Finke, R. A., Freyd, J. J., &Shyi, G. C. W. (1986). Implied velocity and acceleration induce transformations of visual memory.Journal of Experimental Psychology: General,115, 175–188.CrossRefGoogle Scholar
  10. Finke, R. A., &Shyi, G. C. W. (1988). Mental extrapolation and representational momentum for complex implied motions.Journal of Experimental Psychology: Learning, Memory, & Cognition,14, 112–120.CrossRefGoogle Scholar
  11. Fodor, J. A. (1983).The modularity of mind. Cambridge, MA: MIT Press.Google Scholar
  12. Freyd, J. J. (1983). The mental representation of movement when static stimuli are viewed.Perception & Psychophysics,33, 575–581.Google Scholar
  13. Freyd, J. J. (1987). Dynamic mental representations.Psychological Review,94, 427–438.CrossRefPubMedGoogle Scholar
  14. Freyd, J. J. (1992). Dynamic representations guiding adaptive behavior. In F. Macar, V. Pouthas, & W. J. Friedman (Eds.),Time, action, and cognition: Towards bridging the gap (pp. 309–323). Dordrecht: Kluver.Google Scholar
  15. Freyd, J. J. (1993). Five hunches about perceptual processes and dynamic representations. In D. Meyer & S. Kornblum (Eds.),Attention and performance XIV: Synergies in experimental psychology, artificial intelligence, and cognitive neuroscience (pp. 99–119). Cambridge, MA: MIT Press.Google Scholar
  16. Freyd, J. J., &Finke, R. A. (1984). Representational momentum.Journal of Experimental Psychology: Learning, Memory, & Cognition,10, 126–132.CrossRefGoogle Scholar
  17. Freyd, J. J., &Finke, R. A. (1985). A velocity effect for representational momentum.Bulletin of the Psychonomic Society,23, 443–446.Google Scholar
  18. Freyd, J. J., &Johnson, J. Q. (1987). Probing the time course of representational momentum.Journal of Experimental Psychology: Learning, Memory, & Cognition,13, 259–269.CrossRefGoogle Scholar
  19. Freyd, J. J., &Jones, K. T. (1994). Representational momentum for a spiral path.Journal of Experimental Psychology: Learning, Memory, & Cognition,20, 968–976.CrossRefGoogle Scholar
  20. Freyd, J. J., Kelly, M. H., &DeKay, M. L. (1990). Representational momentum in memory for pitch.Journal of Experimental Psychology: Learning, Memory, & Cognition,16, 1107–1117.CrossRefGoogle Scholar
  21. Freyd, J. J., Pantzer, T. M., &Cheng, J. L. (1988). Representing statics as forces in equilibrium.Journal of Experimental Psychology: General,117, 395–407.CrossRefGoogle Scholar
  22. Futterweit, L. R., &Beilin, H. (1994). Recognition memory for movement in photographs: A developmental study.Journal of Experimental Child Psychology,57, 163–179.CrossRefPubMedGoogle Scholar
  23. Grossberg, S., &Rudd, M. E. (1989). A neural architecture for visual motion perception: Group and element apparent motion.Neural Networks,2, 421–450.CrossRefGoogle Scholar
  24. Halpern, A. R., &Kelly, M. H. (1993). Memory biases in left versus right implied motion.Journal of Experimental Psychology: Learning, Memory, & Cognition,19, 471–484.CrossRefGoogle Scholar
  25. Hubbard, T. L. (1990). Cognitive representation of linear motion: Possible direction and gravity effects in judged displacement.Memory & Cognition,18, 299–309.Google Scholar
  26. Hubbard, T. L. (1993a). Auditory representational momentum: Musical schemata and modularity.Bulletin of the Psychonomic Society,31, 201–204.Google Scholar
  27. Hubbard, T. L. (1993b). The effect of context on visual representational momentum.Memory & Cognition,21, 103–114.Google Scholar
  28. Hubbard, T. L. (1994a). Judged displacement: A modular process?American Journal of Psychology,107, 359–373.CrossRefGoogle Scholar
  29. Hubbard, T. L. (1994b). Memory psychophysics.Psychological Research/ Psychologische Forschung,56, 237–250.CrossRefGoogle Scholar
  30. Hubbard, T. L. (1995a). Auditory representational momentum: Surface form, velocity, and direction effects.American Journal of Psychology,108, 255–274.CrossRefGoogle Scholar
  31. Hubbard, T. L. (1995b). Cognitive representation of motion: Evidence for representational friction and gravity analogues.Journal of Experimental Psychology: Learning, Memory, & Cognition,21, 1–14.CrossRefGoogle Scholar
  32. Hubbard, T. L. (1995c).Representational momentum, centripetal force, and curvilinear impetus. Manuscript submitted for publication.Google Scholar
  33. Hubbard, T. L. (1995d).Target size and displacement along the axis of implied gravitational attraction. Manuscript submitted for publication.Google Scholar
  34. Hubbard, T. L. (in press). Displacement in depth: Representational momentum and boundary extension.Psychological Research/Psychologische Forschung.Google Scholar
  35. Hubbard, T. L., &Bharucha, J. J. (1988). Judged displacement in apparent vertical and horizontal motion.Perception & Psychophysics,44, 211–221.Google Scholar
  36. Intraub, H., Bender, R. S., &Mangels, J. A. (1992). Looking at pictures but remembering scenes.Journal of Experimental Psychology: Learning, Memory, & Cognition,18, 180–191.CrossRefGoogle Scholar
  37. Intraub, H., &Bodamer, J. L. (1993). Boundary extension: Fundamental aspect of pictorial representation or encoding artifact?Journal of Experimental Psychology: Learning, Memory, & Cognition,19, 1387–1397.CrossRefGoogle Scholar
  38. Intraub, H., &Richardson, M. (1989). Wide-angle memories of close-up scenes.Journal of Experimental Psychology: Learning, Memory, & Cognition,15, 179–187.CrossRefGoogle Scholar
  39. Kahneman, D., Slovic, P., &Tversky, A. (1982).Judgment under uncertainty: Heuristics and biases. New York: Cambridge University Press.Google Scholar
  40. Kelly, M. H., &Freyd, J. J. (1987). Explorations of representational momentum.Cognitive Psychology,19, 369–401.CrossRefPubMedGoogle Scholar
  41. McCloskey, M. (1983). Naive theories of motion. In D. Gentner & A. L. Stevens (Eds.),Mental models (pp. 299–324). Hillsdale, NJ: Erlbaum.Google Scholar
  42. McCloskey, M., &Kohl, D. (1983). Naive physics: The curvilinear impetus principle and its role in interactions with moving objects.Journal of Experimental Psychology: Learning, Memory, & Cognition,9, 146–156.CrossRefGoogle Scholar
  43. Munger, M. P., &Cooper, L. A. (1993, November).What is represented in representational momentum? Poster presented at the meeting of the Psychonomic Society, Washington, DC.Google Scholar
  44. Pantzer, T. M., &Freyd, J. J. (1989).Searching for a mass effect for representational momentum. Unpublished manuscript.Google Scholar
  45. Ranney, M. (1989). Internally represented forces may be cognitively penetrable: Comment on Freyd, Pantzer, and Cheng (1988).Journal of Experimental Psychology: General,118, 399–402.CrossRefGoogle Scholar
  46. Ranney, M. (1994). Relative consistency and subjects’ “theories” in domains such as naive physics: Common research difficulties illustrated by Cooke and Breedin.Memory & Cognition,22, 494–502.Google Scholar
  47. Reed, C. L., &Vinson, N. G. (in press). Conceptual effects on representational momentum.Journal of Experimental Psychology: Human Perception & Performance.Google Scholar
  48. Shepard, R. N. (1984). Ecological constraints on internal representation: Resonant kinematics of perceiving, imaging, thinking, and dreaming.Psychological Review,91, 417–447.CrossRefPubMedGoogle Scholar
  49. Shepard, R. N. (1994). Perceptual-cognitive universals as reflections of the world.Psychonomic Bulletin & Review,1, 2–28.CrossRefGoogle Scholar
  50. Shiffrar, M. M., &Shepard, R. N. (1991). Comparison of cube rotations around axes inclined relative to the environment or to the cube.Journal of Experimental Psychology: Human Perception & Performance,17, 44–54.CrossRefGoogle Scholar
  51. Verfaillie, K., &d’Ydewalle, G. (1991). Representational momentum and event course anticipation in the perception of implied periodical motions.Journal of Experimental Psychology: Learning, Memory, & Cognition,17, 302–313.CrossRefGoogle Scholar
  52. White, H., Minor, S. W., Merrell, J., &Smith, T. (1993). Representational-momentum effects in the cerebral hemispheres.Brain & Cognition,22, 161–170.CrossRefGoogle Scholar

Copyright information

© Psychonomic Society, Inc. 1995

Authors and Affiliations

  • Timothy L. Hubbard
    • 1
  1. 1.University of ArizonaTucson
  2. 2.Department of PsychologyTexas Christian UniversityFort Worth

Personalised recommendations