Psychonomic Bulletin & Review

, Volume 3, Issue 1, pp 21–36

Brain size and cognitive ability: Correlations with age, sex, social class, and race

Article

Abstract

Using data from magnetic resonance imaging (MRI), autopsy, endocranial measurements, and other techniques, we show that (1) brain size is correlated with cognitive ability about .44 using MRI; (2) brain size varies by age, sex, social class, and race; and (3) cognitive ability varies by age, sex, social class, and race. Brain size and cognitive ability show a curvilinear relation with age, increasing to young adulthood and then decreasing; increasing from women to men; increasing with socioeconomic status; and increasing from Africans to Europeans to Asians. Although only further research can determine if such correlations represent cause and effect, it is clear that the direction of the brain-size/cognitive-ability relationships described by Paul Broca (1824–1880), Francis Galton (1822–1911), and other nineteenth-century visionaries is true, and that the null hypothesis of no relation, strongly advocated over the last half century, is false.

References

  1. Andreasen, N. C. (1993, November).Sex differences in the brain: Perspectives from neuroimaging. Paper presented at a meeting of the Society for Neuroscience, Washington, DC.Google Scholar
  2. Andreasen, N. C., Ehrhardt, J. C., Swayze, V. W., Alliger, R. J., Yuh, W. T. C., Cohen, G., &Ziebell, S. (1990). Magnetic resonance imaging of the brain in schizophrenia.Archives of General Psychiatry,47, 35–44.PubMedGoogle Scholar
  3. Andreasen, N. C., Flaum, M., Swayze, V., O’Leary, D. S., Alliger, R., Cohen, G., Ehrhardt, J., &Yuh, W. T. C. (1993). Intelligence and brain structure in normal individuals.American Journal of Psychiatry,150, 130–134.PubMedGoogle Scholar
  4. Ankney, C. D. (1992). Sex differences in relative brain size: The mismeasure of woman, too?Intelligence,16, 329–336.CrossRefGoogle Scholar
  5. Ankney, C. D. (1995). Sex differences in brain size and mental abilities: Comments on R. Lynn and D. Kimura.Personality & Individual Differences,18, 423–424.CrossRefGoogle Scholar
  6. Armstrong, E. (1990). Brains, bodies and metabolism.Brain, Behavior & Evolution,36, 166–176.CrossRefGoogle Scholar
  7. Baker, J. R. (1974).Race. Oxford: Oxford University Press.Google Scholar
  8. Beals, K. L., Smith, C. L., &Dodd, S. M. (1984). Brain size, cranial morphology, climate, and time machines.Current Anthropology,25, 301–330.CrossRefGoogle Scholar
  9. Bogaert, A. F., &Rushton, J. P. (1989). Sexuality, delinquency andr/K reproductive strategies: Data from a Canadian university sample.Personality & Individual Differences,10, 1071–1077.CrossRefGoogle Scholar
  10. Bouchard, T. J., Jr.,Lykken, D. T., McGue, M., Segal, N. L., &Tellegen, A. (1990). Sources of human psychological differences: The Minnesota study of twins reared apart.Science,250, 223–228.PubMedCrossRefGoogle Scholar
  11. Bouchard, T. J., Jr., &McGue, M. (1981). Familial studies of intelligence: A review.Science,212, 1055–1059.PubMedCrossRefGoogle Scholar
  12. Brandt, I. (1978). Growth dynamics of low-birth weight infants with emphasis on the perinatal period. In F. Falkner & J. M. Tanner (Eds.),Human growth (Vol. 2, pp. 557–617). New York: Plenum.Google Scholar
  13. Bray, P. F., Shields, W. D., Wolcott, G. J., &Madsen, J. A. (1969). Occipitofrontal head circumference—An accurate measure of intracranial volume.Journal of Pediatrics,75, 303–305.PubMedCrossRefGoogle Scholar
  14. Broca, P. (1861). Sur le volume et la forme du cerveau suivant les individus et suivant les races.Bulletins et mémoires de la Société d’Anthropologie de Paris,2, 139–207, 301–321, 441–446.Google Scholar
  15. Brody, N. (1992).Intelligence. New York: Academic Press.Google Scholar
  16. Broman, S. H., Nichols, P. L., &Kennedy, W. A. (1975).Preschool IQ: Prenatal and early development correlates. Hillsdale, NJ: Erlbaum.Google Scholar
  17. Broman, S. H., Nichols, P. L., Shaughnessy, P., &Kennedy, W. (1987).Retardation in young children. Hillsdale, NJ: Erlbaum.Google Scholar
  18. Cattell, R. B. (1982).The inheritance of personality and ability. New York: Academic Press.Google Scholar
  19. Clark, E. A., &Hanisee, J. (1982). Intellectual and adaptive performance of Asian children in adoptive American settings.Developmental Psychology,18, 595–599.CrossRefGoogle Scholar
  20. Cooke, R. W. I., Lucas, A., Yudkin, P. L. N., &Pryse-Davies, J. (1977). Head circumference as an index of brain weight in the fetus and new born.Early Human Development,112, 145–149.CrossRefGoogle Scholar
  21. Darwin, C. (1871).The descent of man. London: Murray.Google Scholar
  22. Dekaban, A. S., &Sadowsky, D. (1978). Changes in brain weights during the span of human life: Relation of brain weights to body heights and body weights.Annals of Neurology,4, 345–356.PubMedCrossRefGoogle Scholar
  23. DeMyer, M. K., Gilmor, R. L., Hendrie, H. C., DeMyer, W. E., Augustyn, G. T., &Jackson, R. K. (1988). Magnetic resonance brain images in schizophrenic and normal subjects: Influence of diagnosis and education.Schizophrenia Bulletin,14, 21–32.PubMedGoogle Scholar
  24. Egan, V., Chiswick, A., Santosh, C., Naidu, K., Rimmington, J. E., &Best, J. J. K. (1994). Size isn’t everything: A study of brain volume, intelligence and auditory evoked potentials.Personality & Individual Differences,17, 357–367.CrossRefGoogle Scholar
  25. Egan, V., Wickett, J. C., &Vernon, P. A. (1995). Brain size and intelligence: Erratum, addendum, and correction.Personality & Individual Differences,19, 113–115.CrossRefGoogle Scholar
  26. Estabrooks, G. H. (1928). The relation between cranial capacity, relative cranial capacity and intelligence in school children.Journal of Applied Psychology,12, 524–529.CrossRefGoogle Scholar
  27. Eysenck, H. J. (1991a). Race and intelligence: An alternative hypothesis.Mankind Quarterly,32, 133–136.Google Scholar
  28. Eysenck, H. J. (1991b). Raising IQ through vitamin and mineral supplementation: An introduction.Personality & Individual Differences,12, 329–333.CrossRefGoogle Scholar
  29. Fisch, R. O., Bilek, M. K., Horrobin, J. M., &Chang, P. N. (1976). Children with superior intelligence at 7 years of age.American Journal of Diseases in Children,130, 481–487.Google Scholar
  30. Fisher, R. A. (1970).Statistical methods for research workers (14th ed.). New York: Hafner Press.Google Scholar
  31. Flaum, M., Andreasen, N. C., Swayze, V. W., II,O’Leary, D. S., &Alliger, R. J. (1994). IQ and brain size in schizophrenia.Psychiatry Research,53, 243–257.PubMedCrossRefGoogle Scholar
  32. Frydman, M., &Lynn, R. (1989). The intelligence of Korean children adopted in Belgium.Personality & Individual Differences,10, 1323–1326.CrossRefGoogle Scholar
  33. Galton, F. (1888). Head growth in students at the University of Cambridge.Nature,38, 14–15.CrossRefGoogle Scholar
  34. Gottfredson, L. S. (1986). (Ed.) Theg factor in employment.Journal of Vocational Behavior,29, 293–450.Google Scholar
  35. Gould, S. J. (1978). Morton’s ranking of races by cranial capacity.Science,200, 503–509.PubMedCrossRefGoogle Scholar
  36. Gould, S. J. (1981).The mismeasure of man. New York: Norton.Google Scholar
  37. Gur, R. C., Mozley, P. D., Resnick, S. M., Gottlieb, G. L., Kohn, M., Zimmerman, R., Herman, G., Atlas, S., Grossman, R., Berretta, D., Erwin, R., &Gur, R. E. (1991). Gender differences in age effect on brain atrophy measured by magnetic resonance imaging.Proceedings of the National Academy of Sciences,88, 2845–2849.CrossRefGoogle Scholar
  38. Hack, M., Breslau, N., Weissman, B., Aram, D., Klein, N., &Borawski, E. (1991). Effect of very low birth weight and subnormal head size on cognitive abilities at school age.New England Journal of Medicine,325, 231–237.PubMedCrossRefGoogle Scholar
  39. Haier, R. J., Chueh, D., Touchette, P., Lott, I., Buchsbaum, M. S., Macmillan, D., Sandman, C., LaCasse, L., &Sosa, E. (1995). Brain size and cerebral glucose metabolic rate and nonspecific mental retardation and Down syndrome.Intelligence,20, 191–210.CrossRefGoogle Scholar
  40. Harvey, I., Persaud, R., Ron, M. A., Baker, G., &Murray, R. M. (1994). Volumetric MRI measurements in bipolars compared with schizophrenics and healthy controls.Psychological Medicine,24, 689–699.PubMedCrossRefGoogle Scholar
  41. Haug, H. (1987). Brain sizes, surfaces, and neuronal sizes of the cortex cerebri: A stereological investigation of man and his variability and a comparison with some species of mammals (primates, whales, marsupials, insectivores, and one elephant).American Journal of Anatomy,180, 126–142.PubMedCrossRefGoogle Scholar
  42. Henneberg, M., Budnik, A., Pezacka, M., &Puch, A. E. (1985). Head size, body size and intelligence: Intraspecific correlations inHomo sapiens sapiens.Homo,36, 207–218.Google Scholar
  43. Herrnstein, R. J., &Murray, C. (1994).The bell curve. New York: Free Press.Google Scholar
  44. Ho, K. C., Roessmann, U., Straumfjord, J. V., &Monroe, G. (1980a). Analysis of brain weight: I. Adult brain weight in relation to sex, race, and age.Archives of Pathology & Laboratory Medicine,104, 635–639.Google Scholar
  45. Ho, K. C., Roessmann, U., Straumfjord, J. V., &Monroe, G. (1980b). Analysis of brain weight: II. Adult brain weight in relation to body height, weight, and surface area.Archives of Pathology & Laboratory Medicine,104, 640–645.Google Scholar
  46. Hofman, M. A. (1991). The fractal geometry of convoluted brains.Journal für Hirnforschung,32, 103–111.PubMedGoogle Scholar
  47. Hofman, M. A. (1993). Encephalization and the evolution of longevity in mammals.Journal of Evolutionary Biology,6, 209–227.CrossRefGoogle Scholar
  48. Hofman, M. A., &Swaab, D. F. (1991). Sexual dimorphism of the human brain: Myth and reality.Experimental Clinical Endocrinology,98, 161–170.CrossRefGoogle Scholar
  49. Holloway, R. L. (1980). Within-species brain-body weight variability: A reexamination of the Danish data and other primate species.American Journal of Physical Anthropology,53, 109–121.PubMedCrossRefGoogle Scholar
  50. Hooton, E. A. (1939).The American criminal (Vol. 1). Cambridge, MA: Harvard University Press.Google Scholar
  51. Hunter, J. E., &Schmidt, F. L. (1990).Methods of meta-analysis: Correcting error and bias in research findings. Newbury, CA: Sage.Google Scholar
  52. Jackson, D. N. (1993, July 17–21).Sex differences in intellectual ability. Paper presented at a meeting of the International Society for the Study of Individual Differences, Baltimore.Google Scholar
  53. Jackson, D. N. (1995, May).Sex differences in general cognitive ability. Paper presented at a meeting of the International Behavioral Development Symposium: Biological Basis of Sexual Orientation and Sex-Typical Behavior, Minot State University, Minot, ND.Google Scholar
  54. Jensen, A. R. (1980).Bias in mental testing. New York: Free Press.Google Scholar
  55. Jensen, A. R. (1993a). Psychometric G and achievement. In B. R. Gifford (Ed.),Policy perspectives on educational testing (pp. 117–227). Boston: Kluwer.Google Scholar
  56. Jensen, A. R. (1993b). Spearman’s hypothesis tested with chronometric information processing tasks.Intelligence,17, 47–77.CrossRefGoogle Scholar
  57. Jensen, A. R. (1994). Psychometricg related to differences in head size.Personality & Individual Differences,17, 597–606.CrossRefGoogle Scholar
  58. Jensen, A. R., &Johnson, F. W. (1994). Race and sex differences in head size and IQ.Intelligence,18, 309–333.CrossRefGoogle Scholar
  59. Jensen, A. R., &Sinha, S. N. (1993). Physical correlates of human intelligence. In P. A. Vernon (Ed.),Biological approaches to the study of human intelligence (pp. 139–242). Norwood, NJ: Ablex.Google Scholar
  60. Jensen, A. R., &Whang, P. A. (1993). Reaction times and intelligence: A comparison of Chinese-American and Anglo-American children.Journal of Biosocial Science,25, 397–410.PubMedCrossRefGoogle Scholar
  61. Jensen, A. R., &Whang, P. A. (1994). Speed of accessing arithmetic facts in long-term memory: A comparison of Chinese-American and Anglo-American children.Contemporary Educational Psychology,19, 1–12.CrossRefGoogle Scholar
  62. Jerison, H. J. (1963). Interpreting the evolution of the brain.Human Biology,35, 263–291.Google Scholar
  63. Jerison, H. J. (1973).Evolution of the brain and intelligence. New York: Academic Press.Google Scholar
  64. Jernigan, T. L., Archibald, S. L., Berhow, M. T., Sowell, E. R., Foster, D. S., &Hesselink, J. R. (1991). Cerebral structure on MRI, part 1: Localization of age-related changes.Biological Psychiatry,29, 55–67.PubMedCrossRefGoogle Scholar
  65. Johnson, R. C., McClearn, G. E., Yuen, S., Nagoshi, C. T., Ahern, F. M., &Cole, R. E. (1985). Galton’s data a century later.American Psychologist,40, 875–892.PubMedCrossRefGoogle Scholar
  66. Kamin, L. J. (1974).The science and politics of IQ. Hillsdale, NJ: Erlbaum.Google Scholar
  67. Kandel, E. R. (1991). Nerve cells and behavior. In E. R. Kandel, J. H. Schwartz, & T. M. Jessell (Eds.),Principles of neural science (3rd ed., pp. 18–32). New York: Elsevier.Google Scholar
  68. Kimura, D. (1992). Sex differences in the brain.Scientific American,267, 119–125.CrossRefGoogle Scholar
  69. Klein, R. E., Freeman, H. E., Kagan, J., Yarborough, C., &Habicht, J. P. (1972). Is big smart? The relation of growth to cognition.Journal of Health & Social Behavior,13, 219–250.CrossRefGoogle Scholar
  70. Kolakowski, D., &Malina, R. M. (1974). Spatial ability, throwing accuracy, and man’s hunting heritage.Nature,251, 410–412.PubMedCrossRefGoogle Scholar
  71. Kretschmer, E. (1936).Physique and character (2nd ed.). London: Routledge.Google Scholar
  72. Krogman, W. M. (1970). Growth of head, face, trunk and limbs in Philadelphia White and Negro children of elementary and high school age.Monographs of the Society for Research in Child Development,35 (No. 136).Google Scholar
  73. Lewontin, R. C., Rose, S., &Kamin, L. J. (1984).Not in our genes. New York: Pantheon.Google Scholar
  74. Lynn, R. (1990). New evidence on brain size and intelligence: A comment on Rushton and Cain and Vanderwolf.Personality & Individual Differences,11, 795–797.CrossRefGoogle Scholar
  75. Lynn, R. (1991). Race differences in intelligence: A global perspective.Mankind Quarterly,31, 255–296.Google Scholar
  76. Lynn, R. (1993a). Further evidence for the existence of race and sex differences in cranial capacity.Social Behavior & Personality,21, 89–92.CrossRefGoogle Scholar
  77. Lynn, R. (1993b). Nutrition and intelligence. In P. A. Vernon (Ed.),Biological approaches to the study of human intelligence (pp. 243- 258). Norwood, NJ: Ablex.Google Scholar
  78. Lynn, R. (1994). Sex differences in intelligence and brain size: A paradox resolved.Personality & Individual Differences,17, 257–271.CrossRefGoogle Scholar
  79. Lynn, R., &Hattori, K. (1990). The heritability of intelligence in Japan.Behavior Genetics,20, 545–546.PubMedCrossRefGoogle Scholar
  80. Lynn, R., &Jindal, S. (1993). Positive correlations between brain size and intelligence: Further evidence from India.Mankind Quarterly,34, 109–123.Google Scholar
  81. Lynn, R., &Shigehisa, T. (1991). Reaction times and intelligence: A comparison of Japanese and British children.Journal of Biosocial Science,23, 409–416.PubMedCrossRefGoogle Scholar
  82. Mascie-Taylor, C. G. N., &Gibson, J. B. (1978). Social mobility and IQ components.Journal of Biosocial Science,10, 263–276.PubMedCrossRefGoogle Scholar
  83. Michael, J. A. (1988). A new look at Morton’s craniological research.Current Anthropology,29, 349–354.CrossRefGoogle Scholar
  84. Miller, E. M. (1926).Brain capacity and intelligence (Monograph Series No. 4). Sydney: Australian Association for Psychology and Philosophy.Google Scholar
  85. Miller, E. M. (1994). Intelligence and brain myelination: A hypothesis.Personality & Individual Differences,17, 803–832.CrossRefGoogle Scholar
  86. Morton, S. G. (1849). Observations on the size of the brain in various races and families of man.Proceedings of the Academy of Natural Sciences Philadelphia,4, 221–224.Google Scholar
  87. Murdock, J., &Sullivan, L. R. (1923). A contribution to the study of mental and physical measurements in normal school children.American Physical Education Review,28, 209–330.Google Scholar
  88. Osborne, R. T. (1980).Twins: Black and white. Athens, GA: Foundation for Human Understanding.Google Scholar
  89. Osborne, R. T. (1992). Cranial capacity and IQ.Mankind Quarterly,32, 275–280.Google Scholar
  90. Packard, G. C., &Boardman, T. J. (1988). The misuse of ratios, indices, and percentages in ecophysiological research.Physiological Zoology,61, 1–9.Google Scholar
  91. Pagel, M. D., &Harvey, P. H. (1988). How mammals produce largebrained offspring.Evolution,42, 948–957.CrossRefGoogle Scholar
  92. Pakkenberg, H., &Voigt, J. (1964). Brain weight of the Danes.Acta Anatomica,56, 297–307.CrossRefGoogle Scholar
  93. Passingham, R. E. (1979). Brain size and intelligence in man.Brain, Behavior & Evolution,16, 253–270.CrossRefGoogle Scholar
  94. Pearl, R. (1906). On the correlation between intelligence and the size of the head.Journal of Comparative Neurology & Psychology,16, 189–199.CrossRefGoogle Scholar
  95. Pearlson, G. D., Kim, W. S., Kubos, K. L., Moberg, P. J., Jayaram, G., Bascom, M. J., Chase, G. A., Goldfinger, A. D., &Tune, L. E. (1989). Ventricle-brain ratio, computed tomographic density, and brain area in 50 schizophrenics.Archives of General Psychiatry,46, 690–697.PubMedGoogle Scholar
  96. Pearson, K. (1906). On the relationship of intelligence to size and shape of head, and to other physical and mental characters.Biometrika,5, 105–146.Google Scholar
  97. Pedersen, N. L., Plomin, R., Nesselroade, J. R., &McClearn, G. D. (1992). A quantitative genetic analysis of cognitive abilities during the second half of the life span.Psychological Science,3, 346–353.CrossRefGoogle Scholar
  98. Pfefferbaum, A., Mathalon, D. H., Sullivan, E. V., Rawles, J. M., Zipursky, R. B., &Lim, K. O. (1994). A quantitative magnetic resonance imaging study of changes in brain morphology from infancy to late adulthood.Archives of Neurology,51, 874–887.PubMedGoogle Scholar
  99. Pool, R. (1994).Eve’s rib: Searching for the biological roots of sex differences. New York: Crown.Google Scholar
  100. Porteus, S. D. (1937).Primitive intelligence and environment. New York: Macmillan.CrossRefGoogle Scholar
  101. Raz, N., Torres, I. J., Spencer, W. D., Millman, D., Baertschi, J. C., &Sarpel, G. (1993). Neuroanatomical correlates of age-sensitive and age-invariant cognitive abilities: Anin vivo MRI investigation.Intelligence,17, 407–422.CrossRefGoogle Scholar
  102. Reed, T. E., &Jensen, A. R. (1993). Cranial capacity: New Caucasian data and comments on Rushton’s claimed Mongoloid-Caucasoid brain size differences.Intelligence,17, 423–431.CrossRefGoogle Scholar
  103. Reid, R. W., &Mulligan, J. H. (1923). Relation of cranial capacity to intelligence.Journal of the Royal Anthropological Institute,53, 322–331.Google Scholar
  104. Resnick, S. M. (1995, May).Gender differences in brain structure and function in the elderly. Paper presented at a meeting of the International Behavioral Development Symposium: Biological Basis of Sexual Orientation and Sex-Typical Behavior, Minot State University, Minot, ND.Google Scholar
  105. Rosenthal, R. (1984).Meta-analytic procedures for social research. Newbury Park, CA: Sage.Google Scholar
  106. Rushton, J. P. (1988a). Race differences in behaviour: A review and evolutionary analysis.Personality & Individual Differences,9, 1009–1024.CrossRefGoogle Scholar
  107. Rushton, J. P. (1988b). The reality of racial differences: A rejoinder with new evidence.Personality & Individual Differences,9, 1035–1040.CrossRefGoogle Scholar
  108. Rushton, J. P. (1992a). Cranial capacity related to sex, rank, and race in a stratified random sample of 6,325 U.S. military personnel.Intelligence,16, 401–413.CrossRefGoogle Scholar
  109. Rushton, J. P. (1992b). Life history comparisons between Orientals and Whites at a Canadian university.Personality & Individual Differences,13, 439–442.CrossRefGoogle Scholar
  110. Rushton, J. P. (1994). Sex and race differences in cranial capacity from International Labour Office data.Intelligence,19, 281–294.CrossRefGoogle Scholar
  111. Rushton, J. P. (1995).Race, evolution and behavior: A life-history perspective. New Brunswick, NJ: Transaction Publishers.Google Scholar
  112. Rushton, J. P., &Ankney, C. D. (1995). Brain size matters: A reply to Peters.Canadian Journal of Experimental Psychology,49, 562–569.PubMedGoogle Scholar
  113. Rushton, J. P., &Osborne, R. T. (1995). Genetic and environmental contributions to cranial capacity estimated in Black and White adolescents.Intelligence,20, 1–13.CrossRefGoogle Scholar
  114. Scarr, S., Weinberg, R. A., &Waldman, I. D. (1993). IQ correlations in transracial adoptive families.Intelligence,17, 541–555.CrossRefGoogle Scholar
  115. Schaie, K. W., &Strother, C. R. (1968). A cross-sequential study of age changes in cognitive behavior.Psychological Bulletin,70, 671–680.PubMedCrossRefGoogle Scholar
  116. Schreider, E. (1966). Brain weight correlations calculated from original results of Paul Broca.American Journal of Physical Anthropology,25, 153–158.PubMedCrossRefGoogle Scholar
  117. Schreider, E. (1968). Quelques corrélations somatiques des tests mentaux.Homo,19, 38–43.Google Scholar
  118. Schultz, R. T. (1991).The relationship between intelligence and gray-white matter image contrast: A MRI study of healthy college students. Unpublished doctoral dissertation, University of Texas, Austin.Google Scholar
  119. Snyderman, M., &Rothman, S. (1987). Survey of expert opinion on intelligence and aptitude testing.American Psychologist,42, 137–144.CrossRefGoogle Scholar
  120. Snyderman, M., &Rothman, S. (1988).The IQ controversy, the media, and public policy. New Brunswick, NJ: Transaction.Google Scholar
  121. Sommerville, R. C. (1924). Physical, motor and sensory traits.Archives of Psychology,12, 1–108.Google Scholar
  122. Sorokin, P. (1927).Social mobility. New York: Harper.Google Scholar
  123. Sternberg, R. J. (1988).The triarchic mind: A new theory of human intelligence. New York: Penguin.Google Scholar
  124. Stott, D. H. (1983). Brain size and “intelligence.”British Journal of Developmental Psychology,1, 279–287.Google Scholar
  125. Stringer, C. B., &Andrews, P. (1988). Genetic and fossil evidence for the origin of modern humans.Science,239, 1263–1268.PubMedCrossRefGoogle Scholar
  126. Stumpf, H., &Jackson, D. N. (1994). Gender-related differences in cognitive abilities: Evidence from a medical school admissions testing program.Personality & Individual Differences,17, 335–344.CrossRefGoogle Scholar
  127. Susanne, C. (1979). On the relationship between psychometric and anthropometric traits.American Journal of Physical Anthropology,51, 421–423.CrossRefGoogle Scholar
  128. Swaab, D. F., &Hofman, M. A. (1984). Sexual differentiation of the human brain: A historical perspective. In G. J. De Vries, J. P. C. De Bruin, H. B. M. Uylings, & M. A. Corner (Eds.),Progress in brain research (Vol. 61, pp. 361–374). Amsterdam: Elsevier.Google Scholar
  129. Teasdale, T. W., &Pakkenberg, B. (1988). The association between intelligence level and brain volume measures: A negative finding.Scandinavian Journal of Psychology,29, 123–125.PubMedCrossRefGoogle Scholar
  130. Terman, L. M. (1926/1959).Genetic studies of genius: Vol. 1. Mental and physical traits of a thousand gifted children (2nd ed.). Stanford, CA: Stanford University Press.Google Scholar
  131. Tobias, P. V. (1970). Brain-size, grey matter and race—Fact or fiction?American Journal of Physical Anthropology,32, 3–26.PubMedCrossRefGoogle Scholar
  132. Topinard, P. (1878).Anthropology. London: Chapman & Hall.Google Scholar
  133. Van Valen, L. (1974). Brain size and intelligence in man.American Journal of Physical Anthropology,40, 417–424.PubMedCrossRefGoogle Scholar
  134. Voigt, J., &Pakkenberg, H. (1983). Brain weight of Danish children.Acta Anatomica,116, 290–301.PubMedCrossRefGoogle Scholar
  135. Voyer, D., Voyer, S., &Bryden, M. P. (1995). Magnitude of sex differences in spatial abilities: A meta-analysis and consideration of critical variables.Psychological Bulletin,117, 250–270.PubMedCrossRefGoogle Scholar
  136. Waldman, I. D., Weinberg, R. A., &Scarr, S. (1994). Racial group differences in IQ in the Minnesota Transracial Adoption Study: A reply to Levin and Lynn.Intelligence,19, 29–44.CrossRefGoogle Scholar
  137. Waller, J. H. (1971). Achievement and social mobility: Relationships among IQ score, education, and occupation in two generations.Social Biology,18, 252–259.PubMedGoogle Scholar
  138. Weinberg, R. A., Scarr, S., &Waldman, I. D. (1992). The Minnesota Transracial Adoption Study: A follow-up of IQ test performance at adolescence.Intelligence,16, 117–135.CrossRefGoogle Scholar
  139. Weinberg, W. A., Dietz, S. G., Penick, E. C., &McAlister, W. H. (1974). Intelligence, reading achievement, physical size and social class.Journal of Pediatrics,85, 482–489.PubMedCrossRefGoogle Scholar
  140. Wickett, J. C., Vernon, P. A., &Lee, D. H. (1994).In vivo brain size, head perimeter, and intelligence in a sample of healthy adult females.Personality & Individual Differences,16, 831–838.CrossRefGoogle Scholar
  141. Wigdor, A. K., &Garner, W. R. (1982). (Eds.)Ability testing: Uses, consequences, and controversies. Washington, DC: National Academy Press.Google Scholar
  142. Willerman, L., Schultz, R., Rutledge, J. N., &Bigler, E. D. (1991).In vivo brain size and intelligence.Intelligence,15, 223–228.CrossRefGoogle Scholar
  143. Willerman, L., Schultz, R., Rutledge, J. N., &Bigler, E. D. (1994). Brain structure and cognitive function. In C. R. Reynolds (Ed.),Cognitive assessment: A multi-disciplinary assessment (pp. 35–55). New York: Plenum.Google Scholar
  144. Winick, M., Meyer, K. K., &Harris, R. C. (1975). Malnutrition and environmental enrichment by early adoption.Science,190, 1173–1175.PubMedCrossRefGoogle Scholar
  145. Witelson, S. F., Glezer, I. I., &Kigar, D. L. (1995). Women have greater density of neurons in posterior temporal cortex.Journal of Neuroscience,15, 3418–3428.PubMedGoogle Scholar
  146. Yeo, R. A., Turkheimer, E., Raz, N., &Bigler, E. D. (1987). Volumetric asymmetries of the human brain: Intellectual correlates.Brain & Cognition,6, 15–23.CrossRefGoogle Scholar

Copyright information

© Psychonomic Society, Inc. 1996

Authors and Affiliations

  1. 1.Department of PsychologyUniversity of Western OntarioLondonCanada

Personalised recommendations