Design and efficacy of a head-coil bite bar for reducing movement-related artifacts during functional MRI scanning

  • V. Menon
  • K. O. Lim
  • J. H. Anderson
  • J. Johnson
  • A. Pfefferbaum
Article
  • 510 Downloads

Abstract

This article describes the design, construction, application, and effectiveness of a simple bite bar for use with an MRI whole-head coil to reduce head-movement-related artifacts during functional brain imaging. The device is comfortable to use and allows considerable flexibility in positioning the subject’s head. Eleven subjects were scanned while performing a motor-sequencing experiment with and without the bite bar. The bite bar was generally effective in reducing maximum head movement to less than 0.5 mm (translation) and 0.5° (rotation).

References

  1. Bandettini, P. A., Wong, E. C., Hinks, R. S., &Hyde, J. S. (1992). Time course EPI of human brain function during task activation.Magnetic Resonance in Medicine,25, 390–397.CrossRefPubMedGoogle Scholar
  2. Blamire, A. M., Ogawa, S., Ugurbil, K., Rothman, D., Mc-Carthy, G., Ellermann, J. M., Hyder, F., Rattner, Z., &Shulman, R. G. (1992). Dynamic mapping of the human visual cortex by high-speed magnetic resonance imaging.Proceedings of the National Academy of Sciences,89, 11069–11073.CrossRefGoogle Scholar
  3. Cohen, J., MacWhinney, B., Flatt, M., &Provost, J. (1993). PsyScope: An interactive graphic system for designing and controlling experiments in the psychology laboratory using Macintosh computers.Behavior Research Methods, Instruments, & Computers,25, 257–271.Google Scholar
  4. Friston, K. J., Holmes, A. P., Worsley, K. J., Poline, J. P., Frith, C. D., &Frackowiak, R. S. J. (1995). Statistical parametric maps in functional imaging: A general linear approach.Human Brain Mapping,2, 189–210.CrossRefGoogle Scholar
  5. Friston, K., Williams, S. R., Howard, R., Frackowiak, R. S. J., &Turner, R. (1996). Movement-related effects in fMRI time-series.Magnetic Resonance in Medicine,35, 346–355.PubMedGoogle Scholar
  6. Kwong, K. K., Belliveau, J. W., Chesler, D. A., Goldberg, I. E., Weisskoff, R. M., Poncelet, B. P., Kennedy, D. N., Hoppel, B. E., Cohen, M. S., &Turner, R. (1992). Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation.Proceedings of the National Academy of Sciences,89, 5675–5679.CrossRefGoogle Scholar
  7. Le Bihan, D., Jezzard, P., Haxby, J., Sadato, N., Rueckert, L., &Mattay, V. (1995). Functional magnetic resonance imaging of the brain.Annals of Internal Medicine,122, 296–303.PubMedGoogle Scholar
  8. Menon, V., Johnson, J., Sullivan, E. V., Lim, K. O., Glover, G. H., &Pfefferbaum, A. (1996). Functional MRI activation of multiple basal ganglia-thalamocortical sites during self-generated sequences of arm movements.Society for Neuroscience Abstracts,22, 1085.Google Scholar
  9. Moseley, M. E., &Glover, G. H. (1995). Functional MR imaging: Capabilities and limitations.Neuroimaging Clinics of North America,5, 161–191.PubMedGoogle Scholar
  10. Snyder, A. Z. (1995). Difference image vs. ratio image error function forms in PET-PET realignment. In R. Myer, V. J. Cunningham, D. L. Bailey, & T. Jones (Eds.),Quantification of brain function using PET (pp. 131–137). San Diego: Academic Press.Google Scholar

Copyright information

© Psychonomic Society, Inc. 1997

Authors and Affiliations

  • V. Menon
    • 1
    • 2
  • K. O. Lim
    • 1
    • 2
  • J. H. Anderson
    • 2
  • J. Johnson
    • 1
    • 2
  • A. Pfefferbaum
    • 1
    • 2
  1. 1.Department of Psychiatry and Behavioral SciencesStanford University School of MedicineStanford
  2. 2.Veterans Affairs Palo Alto Health Care SystemPalo Alto

Personalised recommendations