Perception & Psychophysics

, Volume 56, Issue 6, pp 701–707 | Cite as

Tests of human olfactory function: Principal components analysis suggests that most measure a common source of variance

  • Richard L. Doty
  • Richard Smith
  • Donald A. Mckeown
  • Jaya Raj
Article

Abstract

It is not known whether nominally different olfactory tests actually measure dissimilar perceptual attributes. In this study, we administered nine olfactory tests, including tests of odor identification, discrimination, detection, memory, and suprathreshold intensity and pleasantness perception, to 97 healthy subjects. Aprincipal components analysis performed on the intercorrelation matrix revealed four meaningful components. The first was comprised of strong primary loadings from most of the olfactory test measures, whereas the second was comprised of primary loadings from intensity ratings given to a set of suprathreshold odorant concentrations. The third and fourth components had primary loadings that reflected, respectively, mean suprathreshold pleasantness ratings and a response bias measure derived from a yes/no odor identification signal detection task. In an effort to adjust for potential confounding influences of age, gender, smoking, and years of schooling on the component structure, a matrix of residuals from a multiple regression analysis, which included these variables, was also analyzed. A similar component pattern emerged. Overall, these findings suggest, in healthy subjects spanning a wide age range, that (1) a number of nominally distinct tests of olfactory function are measuring a common source of variance, and (2) some suprathreshold odor intensity and pleasantness rating tests may be measuring sources of variance different from this common source.

References

  1. Amoore, J. E., Ollman, B. G. (1983). Practical test kits for quantitatively evaluating the sense of smell.Rhinology,21, 49–54.PubMedGoogle Scholar
  2. Bartoshuk, L. M. (1978). The psychophysics of taste.American Journal of Clinical Nutrition,31, 1068–1077.PubMedGoogle Scholar
  3. Bartoshuk, L. M., Rifkin, B., Marks, L. E., &Bars, P. (1986). Taste and aging.Journal of Gerontology,41, 51–57.PubMedGoogle Scholar
  4. Bromley, S. M., & Doty, R. L. (in press). Odor recognition memory is better under bilateral than unilateral test conditions.Cortex.Google Scholar
  5. Cain, W. S. (1978). History of research on smell. In E. C. Carterette & M. P. Friedman,Handbook of perception (pp. 197–229). New York: Academic Press.Google Scholar
  6. Cain,W. S., &Gent,J. F. (1991). Olfactory sensitivity: Reliability, generality, and association with aging.Journal of Experimental Psychology: Human Perception & Performance,17, 382–391.CrossRefGoogle Scholar
  7. Cain,W. S., Gent,J. E, Goodspeed, R. B., &Leonard, G. (1988). Evaluation of olfactory dysfunction in the Connecticut Chemosen-sory Clinical Research Center.Laryngoscope,98, 83–88.CrossRefPubMedGoogle Scholar
  8. Cain,W.S., &Rabin, R. D. (1989). Comparability of two tests of olfactory functioning.Chemical Senses,14, 479–485.CrossRefGoogle Scholar
  9. Corwin, J. (1989). Olfactory identification in hemodialysis: Acute and chronic effects on discrimination and response bias.Neuropsychologia,27, 513–522.CrossRefPubMedGoogle Scholar
  10. Curcio, C. A., Mcnelly, N. A., &Hinds, J. W. (1985). Aging in the rat olfactory system: Relative stability of piriform cortex contrasts with changes in olfactory bulb and olfactory epithelium.Journal of Comparative Neurology,235, 519–528.CrossRefPubMedGoogle Scholar
  11. Deems, D. A., &Doty, R. L. (1987). Age-related changes in the phenyl ethyl alcohol odor detection threshold.Transactions of the Pennsylvania Academy of Ophthalmology & Otolaryngology,39, 646–650.Google Scholar
  12. Deems, D. A., Doty, R. L., Settle, R. G., Moore-Gillon, V., Shaman, P., Mester, A. E, Kimmelman, C. P, Brightman, V. J., &Snow, J. B., Jr. (1991). Smell and taste disorders: A study of 750 patients from the University of Pennsylvania Smell and Taste Center (1981–1986).Archives of Otolaryngology Head & Neck Surgery,117, 519–528.Google Scholar
  13. Doty, R. L. (1975). An examination of relationships between the pleasantness, intensity, and concentration of 10 odorous stimuli.Perception & Psychophysics,17, 492–496.CrossRefGoogle Scholar
  14. Doty, R. L. (1991). Olfactory system. In I. V. Getchell, R. L. Doty, L. M. Bartoshuk, & I. B. Snow, Jr. (Eds.),Smell and taste in health and disease (pp. 175–203). New York: Raven.Google Scholar
  15. Doty,R. L. (1992). Diagnostic tests and assessment.Journal of Head Trauma,7, 47–65.CrossRefGoogle Scholar
  16. Doty, R. L., Brugger, W. E., Jurs, P. C., Orndorff, M. A., Snyder, P. J., &Lowry, L. D. (1978). Intranasal trigeminal stimulation from odorous volatiles: Psychometric responses from anosmic and normal humans.Physiology & Behavior,20, 175–185.CrossRefGoogle Scholar
  17. Doty, R. L., Deems, D., &Stellar, S. (1988). Olfactory dysfunction in Parkinson’s disease: A general deficit unrelated to neurologic signs, disease stage, or disease duration.Neurology,38, 1237–1244.PubMedGoogle Scholar
  18. Doty, R. L., Frye, R. E., &Agrawal, U. (1989). Internal consistency reliability of the fractionated and whole University of Pennsylvania Smell Identification Test.Perception & Psychophysics,45, 381–384.CrossRefGoogle Scholar
  19. Doty, R. L., Reyes, P., &Gregor, T. (1987). Presence of both odor identification and detection deficits in Alzheimer’s disease.Brain Research Bulletin,18, 597–600.CrossRefPubMedGoogle Scholar
  20. Doty, R. L., Shaman, P., &Dann, M. (1984). Development of the University of Pennsylvania Smell Identification Test: A standardized microencapsulated test of olfactory function.Physiology & Behavior,32, 489–502.CrossRefGoogle Scholar
  21. Engen, L. (1983).The perception of odors. New York: Academic Press.Google Scholar
  22. Gorsuch, R. L. (1983).Factor analysis. Hillsdale, NJ: Erlbaum.Google Scholar
  23. Green, J. E., Songsanand, P., Peretz, S., Hsu, P., Corkin, S., &Growden, J. H. (1989). Dissociation between basic and high order olfactory capacities in Alzheimer’s disease. In R. I. Wurtman, S. H. Corkin.T H. Growden, & E. Ritter-Walker (Eds.),Proceedings of the Fifth Meeting of the International Study Group on Pharmacological Memory Disorders Associated with Aging (pp. 449–455). Cambridge, MA: Center for Brain Sciences and Metabolism Charitable Trust.Google Scholar
  24. Guilford, J. P. (1954).Psychometric methods. New York: McGraw-Hill.Google Scholar
  25. Harper, R., Bate Smith, E. C., &Land, D. G. (1968).Odour description and odour classification. New York: Elsevier.Google Scholar
  26. Jafek, B. w., Eller, P. M., Esses, B. A., Moran, D. T. (1989). Posttraumatic anosmia: Ultrastructural correlates.Archives of Neurology,46, 300–304.PubMedGoogle Scholar
  27. Jones-Gotman, M., &Zatorre, R. J. (1988). Olfactory identification deficits in patients with focal cerebral excision.Neuropsychologia,26, 387–400.CrossRefPubMedGoogle Scholar
  28. Köoster, E. P. (1975). Human psychophysics in olfaction. In D. G. Moulton, A. Turk, & J. W. Johnston, Jr. (Eds.),Methods in olfactory research (pp. 345–374). New York: Academic Press.Google Scholar
  29. Lawless, H. T., &Malone, G. J. (1986). The discriminative efficiency of common scaling methods.Journal of Sensory Studies,1, 85–98.CrossRefGoogle Scholar
  30. Mair, R. G., Doty, R. L., Kelly, K. M., Wilson, C. S., Langlais, P.J., Mcentee, W. J., &Vollmecke, T. A. (1986). Multimodal sensory discrimination deficits in Korsakoff’s psychosis.Neuropsychologia,24, 831–839.CrossRefPubMedGoogle Scholar
  31. Martinez, B. A., Cain, W. S., Dewijk, R. A., Spencer, D. D., Novelly, R. A., &Saas, K. J. (1993). Olfactory functioning before and after temporal lobe resection for intractable seizures.Neuropsychology,7, 351–363.CrossRefGoogle Scholar
  32. Moncrieff, R. W. (1966).Odour preferences. New York: Wiley.Google Scholar
  33. Moran, D. T., Jafek, B. w., Rowley, J. C., &Eller, P. M. (1985). Electron microscopy of olfactory epithelia in two patients with anosmia.Archives of Otolaryngology,111, 122–126.PubMedGoogle Scholar
  34. Nakashima, T., Kimmelman, C. P.,&Snow, J. B., JR. (1984). Structure of human fetal and adult olfactory neuroepithelium.Archives of Otolaryngology,110, 641–646.PubMedGoogle Scholar
  35. Potter, H., &Butters, N. (1980). An assessment of olfactory deficits in patients with damage to prefrontal cortex.Neuropsychologia,18,621–628.CrossRefPubMedGoogle Scholar
  36. Rovee, C. K., Cohen, R. Y., &Shlapack, W. (1975). Life span stability in olfactory sensitivity.Developmental Psychology,11, 311–318.CrossRefGoogle Scholar
  37. Rozeboom, W. W. (1982). The determinacy of common factors in large item domains.Psychometrika,47, 281–295.CrossRefGoogle Scholar
  38. Schiffman, S. S. (1974). Physicochemical correlates of olfactory quality.Science,185, 112–117.CrossRefPubMedGoogle Scholar
  39. Smith, R. S., Doty, R. L., Burlingame, G. K., &Mckeown, D. A. (1993). Smell and taste function in the visually impaired.Perception & Psychophysics,54, 649–655.CrossRefGoogle Scholar
  40. Snodgrass, J. C; &Corwin, J. (1988). Pragmatics of measuring recognition memory: Applications to dementia and amnesia.Journal of Experimental Psychology: General,117, 34–50.CrossRefGoogle Scholar
  41. Spearman, C. (l904).“General intelligence,” objectively determined and measured.American Journal of Psychology,15,201–293.CrossRefGoogle Scholar
  42. Stevens, J. C., Cain,W. S., &Burke, R. J. (1988). Variability of olfactory thresholds.Chemical Senses,13, 643–653.CrossRefGoogle Scholar
  43. Takagi, S. F. (1989).Human of faction. Tokyo: University of Tokyo Press.Google Scholar
  44. Trojanowski, J. Q., Newman, P. D., Hill, W. D., &Lee, V. M.-Y. (1991). Human olfactory epithelium in normal aging, Alzheimer’s disease, and other degenerative disorders.Journal of Comparative Neurology,310, 365–376.CrossRefPubMedGoogle Scholar
  45. Valentin, G. (1848).Lehrbuch der Physiologie des Menschen. Braunschweig.Google Scholar
  46. Vollmecke, T. A., &Doty, R. L. (1985). Development of the Picture Identification Test (PIT): A research companion to the University of Pennsylvania Smell Identification Test.Chemical Senses,10, 413–414.Google Scholar
  47. Wenzel, W. (1948). Techniques in olfactometry.Psychological Bulletin,45, 231–246.CrossRefPubMedGoogle Scholar
  48. West, S. E., & Doty, R. L. (in press). The influence of epilepsy and temporal lobe resection on olfactory function: A review.Epilepsia.Google Scholar
  49. Whipple, G. M. (1914).Manual of mental and physical tests. Baltimore, MD: Warwick & York.Google Scholar
  50. Wilkinson, L. (1990).SYSTAT: The system for statistics. Evanston, IL: SYSTAT, Inc.Google Scholar
  51. Yoshida, M. (1984). Correlation analysis of detection threshold data for “standard test” odors.Bulletin of the Faculty of Science & Engineering of Chuo University,27, 343–353.Google Scholar

Copyright information

© Psychonomic Society, Inc. 1994

Authors and Affiliations

  • Richard L. Doty
    • 1
  • Richard Smith
    • 1
  • Donald A. Mckeown
    • 1
  • Jaya Raj
    • 1
  1. 1.Smell and Taste CenterHospital of the University of PennsylvaniaPhiladelphia

Personalised recommendations