Perception & Psychophysics

, Volume 60, Issue 8, pp 1285–1304 | Cite as

Temporal inhibition in character identification

  • Thomas A. Busey


Models of information processing tasks such as character identification often do not consider the nature of the initial sensory representation from which task-relevant information is extracted. An important component of this representation is temporal inhibition, in which the response to a stimulus may inhibit, or in some cases facilitate, processing of subsequent stimuli. Three experiments demonstrate the existence of temporal inhibitory processes in information processing tasks such as character identification and digit recall. An existing information processing model is extended to account for these effects, based in part on models from the detection literature. These experiments also discriminate between candidate neural mechanisms of the temporal inhibition. Implications for the transient deficit theory of dyslexia are discussed.


Temporal Frequency Impulse Response Function Dyslexia Character Identification Contrast Threshold 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Alexander, K., Xie, W., &Derlacki, D. (1994). Spatial frequency characteristics of letter identification.Journal of the Optical Society of America A,11, 2375–2382.CrossRefGoogle Scholar
  2. Bergen, J. R., &Wilson, H. R. (1985). Prediction of flicker sensitivities from temporal three-pulse data.Vision Research,25, 577–582.CrossRefPubMedGoogle Scholar
  3. Blackwell, H. R. (1963). Neural theories of simple visual discriminations.Journal of the Optical Society of America,53, 129–160.CrossRefPubMedGoogle Scholar
  4. Bouman, M. A., &Van Den Brink, G. (1952). On the integrate capacity in time and space of the human peripheral retina.Journal of the Optical Society of America,42, 617–620.CrossRefPubMedGoogle Scholar
  5. Bowen, R. W. (1989). Two pulses seen as three flashes: A superposition analysis.Vision Research,29, 409–417.CrossRefPubMedGoogle Scholar
  6. Boynton, R. M. (1972). Discrimination of homogeneous double pulses of light. In L. M. Hurvich & D. Jameson (Eds.),Handbook of sensory physiology (pp. 202–232). New York: Springer-Verlag.Google Scholar
  7. Breitmeyer, B. G. (1984).Visual masking: An integrative approach. New York: Oxford University Press.Google Scholar
  8. Breitmeyer, B. G. (1993). The roles of sustained (P) and transient (M) channels in reading and reading disability. In S. F. Wright & R. Groner (Ed.),Facets of dyslexia and its remediation (pp. 13–31). Amsterdam: Elsevier.Google Scholar
  9. Breitmeyer, B. G., &Ganz, L. (1977). Temporal studies with flashed gratings: Inferences about human transient and sustained channels.Vision Research,17, 861–865.CrossRefPubMedGoogle Scholar
  10. Burr, D. C., &Morrone, M. C. (1993). Impulse-response functions for chromatic and achromatic stimuli.Journal of the Optical Society of America A,10, 1706–1713.CrossRefGoogle Scholar
  11. Burr, D. C., Morrone, M. C., &Ross, J. (1994). Selective suppression of the magnocellular visual pathway during saccadic eye movements.Nature,371, 511–513.CrossRefPubMedGoogle Scholar
  12. Busey, T. A., &Loftus, G. R. (1994). Sensory and cognitive components of visual information acquisition.Psychological Review,101, 446–469.CrossRefPubMedGoogle Scholar
  13. Coltheart, M. (1980). Iconic memory and visible persistence.Perception & Psychophysics,27, 183–228.Google Scholar
  14. Den Brinker, A. C. (1989). A comparison of results from parameter estimations of impulse responses of the transient visual system.Biological Cybernetics,61, 139–151.PubMedGoogle Scholar
  15. Den Brinker, A. C. (1990). Changes with background in the linear model of the transient visual system.Biological Cybernetics,62, 441–451.CrossRefPubMedGoogle Scholar
  16. Enroth-Cugell, C., Robson, J. G., Schweitzer-Tong, D. E., &Watson, A. B. (1983). Spatiotemporal interactions in cat retinal ganglion cells showing linear spatial summation.Journal of Physiologv,341, 279–301.Google Scholar
  17. Eriksen, C. W., &Schultz, D. W. (1979). Information processing in visual search: A continuous flow conception and experimental results.Perception & Psychophysics,25, 249–263.CrossRefGoogle Scholar
  18. Fisher, D. (1982). Limited-channel models of automatic detection. Capacity and scanning in visual search.Psychological Review,89, 662–692.CrossRefPubMedGoogle Scholar
  19. Gegenfurtner, K., &Sperling, G. (1993). Information transfer in iconic memory experiments.Journal of Experimental Psychology: Human Perception & Performance,19, 845–866.CrossRefGoogle Scholar
  20. Georgeson, M. A. (1987). Temporal properties of spatial contrast vision.Vision Research,27, 765–780.CrossRefPubMedGoogle Scholar
  21. Hawken, M. J., Shapley, R. M., &Grosof, D. H. (1996). Temporal-frequency selectivity in monkey visual cortex.Visual Neuroscience,13, 477–492.CrossRefPubMedGoogle Scholar
  22. Hayduk, S., Bruck, M., &Cavanagh, P. (1996). Low-level visual processing skills of adults and children with dyslexia.Cognitive Neuropsychology,13, 975–1015.CrossRefGoogle Scholar
  23. Hogben, J. H., &Di Lollo, V. (1974). Perceptual integration and perceptual segregation of brief visual stimuli.Vision Research,14, 1059–1069.CrossRefPubMedGoogle Scholar
  24. Ikeda, M. (1965). Temporal summation of positive and negative flashes in the visual system.Journal of the Optical Society of America,55, 1527–1534.CrossRefGoogle Scholar
  25. Ikeda, M. (1986). Temporal impulse response.Vision Research,26, 1431–1440.CrossRefPubMedGoogle Scholar
  26. Krauskopf, J. (1980). Discrimination and detection of changes in luminance.Vision Research,20, 671–677.CrossRefPubMedGoogle Scholar
  27. Loftus, G. R., Busey, T. A., &Senders, J. W. (1993). Providing a sensory basis for models of visual information acquisition.Perception & Psychophysics,54, 535–554.Google Scholar
  28. Loftus, G. R., &Irwin, D. E. (1998). On the relations among different measures of visible and informational persistence.Cognitive Psychology,35, 135–199.CrossRefPubMedGoogle Scholar
  29. Loftus, G. R., &Ruthruff, E. (1994). A theory of visual information acquisition and visual memory with special application to intensity-duration tradeoffs.Journal of Experimental Psychology: Human Perception & Performance,20, 33–49.CrossRefGoogle Scholar
  30. Lovegrove, W. (1993). Do dyslexies have a visual deficit? In S. F. Wright & R. Groner (Ed.),Facets of dyslexia and its remediation (pp. 33–49). Amsterdam: Elsevier.Google Scholar
  31. Lovegrove, W., Garzia, R., &Nicholson, S. (1990). Experimental evidence for a transient system deficit in specific reading disability.Journal of the American Optometrie Association,16, 137–146.Google Scholar
  32. Matin, L., &Bowen, R. W. (1976). Measuring the duration of perception.Perception & Psychophysics,20, 66–76.CrossRefGoogle Scholar
  33. Meijer, J. G., Van Der Wildt, G., &Van Den Brink, G. (1978). Twin-flash response as a function of flash diameter.Vision Research,18, 1111–1116.CrossRefPubMedGoogle Scholar
  34. Musselwhite, M. J., &Jeffreys, D. A. (1983). Visual evoked potentials to double-pulse pattern presentation.Vision Research,23, 135–143.CrossRefPubMedGoogle Scholar
  35. Ohtani, Y., &Ejima, Y. (1988). Relation between flicker and two-pulse sensitivities for sinusoidal gratings.Vision Research,28, 145–156.PubMedGoogle Scholar
  36. Pelli, D. G. (1997). The VideoToolbox software for visual psychophysics: Transforming numbers into movies.Spatial Vision,10, 437–442.CrossRefPubMedGoogle Scholar
  37. Pelli, D.G., &Zhang, L. (1991). Accurate control of contrast on microcomputer displays.Vision Research,30, 1033–1048.Google Scholar
  38. Purcell, D. G., &Stewart, A. L. (1971). The two-flash threshold: An evaluation of critical-duration and visual-persistence hypotheses.Perception & Psychophysics,9, 61–64.Google Scholar
  39. Rashbass, C. (1970). The visibility of transient changes of luminance.Journal of Physiology,210, 165–186.PubMedGoogle Scholar
  40. Rayner, K., &Pollatsek, A. (1989).The psychology of reading. Englewood Cliffs, NJ: Prentice-Hall.Google Scholar
  41. Roufs, J. A. J. (1973). Dynamic properties of vision-Ill. Twin flashes, single flashes and flicker fusion.Vision Research,13, 309–323.CrossRefPubMedGoogle Scholar
  42. Roufs, J. A. J., &Blommaert, F. J. J. (1981). Temporal impulse and step responses of the human eye obtained psychophysically by means of a drift-correcting perturbation technique.Vision Research,21, 1203–1221.CrossRefPubMedGoogle Scholar
  43. Rumelhart, D. E. (1970). A multicomponent theory of the perception of briefly exposed visual displays.Journal of Mathematical Psychology,7, 191–218.CrossRefGoogle Scholar
  44. Smith, P. L. (1995). Psychophysically principled models of visual simple reaction time.Psychological Review,102, 567–593.CrossRefGoogle Scholar
  45. Solomon, J. A., &Pelli, D. G. (1994). The visual filter mediating letter identification.Nature,369, 395–397.CrossRefPubMedGoogle Scholar
  46. Sperling, G. (1960). The information available in brief visual presentations.Psychological Monographs,74, 1–29.Google Scholar
  47. Sperling, G., &Sondhi, M. M. (1968). Model for visual luminance discrimination and flicker detection.Journal of the Optical Society of America,58, 1133–1145.CrossRefPubMedGoogle Scholar
  48. Theodor, L. H. (1972). The detectability of a brief gap in a pulse of light as a function of its temporal location within the pulse.Perception & Psychophysics,12, 168–170.Google Scholar
  49. Townsend, J. T. (1981). Some characteristics of visual whole report behavior.Acta Psychologica,47, 149–173.CrossRefGoogle Scholar
  50. Uchikawa, K., &Ikeda, M. (1986). Temporal integration of chromatic double pulses for detection of equal-luminance wavelength changes.Journal of the Optical Society of America A,3, 2109–2115.CrossRefGoogle Scholar
  51. Walther-Müller, P. U. (1995). Is there a deficit of early vision in dyslexia?Perception,24, 919–936.CrossRefPubMedGoogle Scholar
  52. Watson, A. B. (1978). Probability summation over time.Vision Research,19, 515–522.CrossRefGoogle Scholar
  53. Watson, A. B. (1986). Temporal sensitivity. In K. R. Boff, L. Kaufman, & J. P. Thomas (Eds.),Handbook of perception and human performance (Vol. 1, pp. 6.1–6.42). New York: Wiley.Google Scholar
  54. Watson, A. B., &Nachmias, J. (1977). Patterns of temporal interaction in the detection of gratings.Vision Research,17, 893–902.CrossRefPubMedGoogle Scholar
  55. Watson, A. B., &Pelli, D. G. (1983). QUEST: A Bayesian adaptive psychometric method.Perception & Psychophysics,33, 113–120.Google Scholar
  56. Williams, M., &Lecluyse, K. (1990). Perceptual consequences of a temporal processing deficit in reading disabled children.Journal of the American Optometrie Association,61, 111–121.Google Scholar

Copyright information

© Psychonomic Society, Inc. 1998

Authors and Affiliations

  1. 1.Department of PsychologyIndiana UniversityBloomington

Personalised recommendations