Perception & Psychophysics

, Volume 43, Issue 5, pp 494–507 | Cite as

Dimensional interactions and the structure of psychological space: The representation of hue, saturation, and brightness

  • Barbara Burns
  • Bryan E. Shepp


The perception of color has traditionally been characterized by the subjective dimensions of hue, brightness, and saturation. In the present study we reexamined this view by investigating whether the dimensions of color stimuli are psychologically independent in dissimilarity judgment, spontaneous classification, and instructed classification tasks. Dissimilarity judgments analyzed within the framework of the additive difference measurement model (Beals, Krantz, & Tversky, 1968; Krantz & Tversky, 1975; Tversky & Krantz, 1969, 1970) reflected violations of psychological independence for hue-chroma, hue-value, and value-chroma stimulus sets. Spontaneous classifications of each color set revealed that subjects were not sensitive to shared dimensional relations of color stimuli, but rather responded to the holistic, overall similarity relations of the stimuli. In the instructed classification task, both untutored undergraduates and "color experts" (artists specially tutored in the Munsell color system), instructed to classify according to shared dimensional relations, could extract dimensional information about either value or chroma when each was varied with hue, but could not extract dimensional information about hue. Color experts were superior to nonexperts in the extraction of dimensional information about chroma only with moderately or highly saturated stimuli. The implications of these results are considered in relation to current thinking about the perceptual organization of color and current thinking about the identification of appropriate diagnostics for independent psychological dimensions.


  1. Beals, R., Krantz, D. H., &Tversky, A. (1968). Foundations of multidimensional scaling.Psychological Review,75, 127–142.CrossRefPubMedGoogle Scholar
  2. Boynton, R. M., &Gordon, J. (1965). Bezold-Brucke hue shift measured by color-naming technique.Journal of Optical Society of America,55, 78–86.CrossRefGoogle Scholar
  3. Burns, B. (1976).Distinctions between proximity data from integral and separable dimensions on the basis of the formal properties of the additive-difference model. Unpublished manuscript, Brown University, Providence, RI.Google Scholar
  4. Burns, B. (1986). Relationship of perceived stimulus structure and intelligence: Further tests of a separability hypothesis.American Journal of Mental Deficiency,91, 196–200.PubMedGoogle Scholar
  5. Burns, B. (1987). Is stimulus structure in the mind’s eye? An examination of dimensional structure in iconic memory.Quarterly Journal of Experimental Psychology,39A, 385–408.Google Scholar
  6. Burns, B., Shepp,B. E., McDonough, D., &Wiener-Ehruch, W. (1978). The relation between stimulus analyzability and perceived dimensional structure. In C. H. Bower (Ed.),The psychology of learning and motivation: Advances in research and theory (Vol. 12). New York: Academic Press.Google Scholar
  7. Dunn, J. C. (1983). Spatial metrics of integral and separable dimensions.Journal of Experimental Psychology: Human Perception & Performance,9, 242–257.CrossRefGoogle Scholar
  8. Foard, C. F., &Kemler Nelson, D. G. (1984). Holistic and analytic modes of processing: The multiple determinants of perceptual analysis.Journal of Experimental Psychology: General,113, 94–111.CrossRefGoogle Scholar
  9. Garner, W. R. (1970). The stimulus in information processing.American Psychologist,25, 350–358.CrossRefGoogle Scholar
  10. Garner, W. R. (1974).The processing of information and structure. Potomac, MD: Erlbaum.Google Scholar
  11. Garner, W. R. (1976). Interaction of stimulus dimensions in concept and choice processes.Cognitive Psychology,8, 98–123.CrossRefGoogle Scholar
  12. Gati, I., &Tversky, A. (1982). Representations of qualitative and quantitative dimensions.Journal of Experimental Psychology,8, 325–340.PubMedGoogle Scholar
  13. Gibson, E. J. (1969).Principles of perceptual learning and development. New York: Appleton-Century-Crofts.Google Scholar
  14. Handel, S., &Imai, S. (1972). The free classification of analyzable and unanalyzable stimuli.Perception & Psychophysics,12, 108–116.Google Scholar
  15. Helm, C. E. (1964). Multidimensional ratio scaling analysis of perceived color relations.Journal of the Optical Society of America,54, 252–262.CrossRefGoogle Scholar
  16. Hyman, R., &Well, A. (1967). Judgments of similarity and spatial models.Perception & Psychophysics,2, 233–248.Google Scholar
  17. Hyman, R., &Well, A. (1968). Perceptual separability and spatial models.Perception & Psychophysics,3, 161–165.Google Scholar
  18. Inoow, T., &Kanazawa, K. (1960). Multidimensional mapping of Munsell colors varying in hue, chroma and value.Journal of Experimental Psychology,59, 330–336.CrossRefGoogle Scholar
  19. Indow, T., &Uchizono, T. (1960). Multidimensional mapping of Munsell colors varying in hue and chroma.Journal of Experimental Psychology,59, 321–329.CrossRefPubMedGoogle Scholar
  20. Itten, J. (1970).The elements of color. New York: Van Nostrand Reinhold.Google Scholar
  21. Krantz, D. H. (1972). Visual scaling. In D. Jameson & L. M. Hurvich (Eds.),Visual Psychophysics. Berlin: Springer-Verlag.Google Scholar
  22. Krantz, D. H., &Tversky, A. (1975). Similarity of rectangles: An analysis of subjective dimensions.Journal of Mathematical Psychology,12, 4–34.CrossRefGoogle Scholar
  23. Kruskal, J. B. (1964). Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis.Psychometrika,29, 1–27.CrossRefGoogle Scholar
  24. Lockhead, G. R. (1972). Processing dimensional stimuli: A note.Psychological Review,79, 410–419.CrossRefPubMedGoogle Scholar
  25. Lockhead, G. R. (1979). Holistic versus analytic process models: A reply.Journal of Experimental Psychology: Human Perception & Performance,5, 746–755.CrossRefGoogle Scholar
  26. Newhall, S. M. (1939). The ratio method in the review of the Munsell colors.American Journal of Psychology,52, 394–405.CrossRefGoogle Scholar
  27. Newhall, S. M., Nickerson, D., &Judd, D. B. (1943). Final report of the O. S. A. subcommittee on the spacing of Munsell colors.Journal of the Optical Society of America,33, 385–418.CrossRefGoogle Scholar
  28. Ronacher, B., &Bautz, W. (1985). Human pattern recognition: Individually different strategies in analyzing complex stimuli.Biological Cybernetics,51, 249–261.CrossRefPubMedGoogle Scholar
  29. Shepard, R. N. (1964). Attention and the metric structure of the stimulus.Journal of Mathematical Psychology,1, 54–87.CrossRefGoogle Scholar
  30. Shepp, B. E., Burns, B., &McDonough, D. D. (1980). The relation of stimulus structure to perceptual and cognitive development: Further tests of a separability hypothesis. In F. Wilkening, J. Becker, & T. Trabasso (Eds.),The integration of information by children. Hillsdale, NJ: Erlbaum.Google Scholar
  31. Smith, J. D., &Baron, J. (1981). Individual differences in the classification of stimuli by dimension.Journal of Experimental Psychology: Human Perception & Performance,7, 1132–1145.CrossRefGoogle Scholar
  32. Smith, L. B., &Kemler, D. G. (1978). Levels of experienced dimensionality in children and adults.Cognitive Psychology,10, 502–532.CrossRefPubMedGoogle Scholar
  33. Torgerson, W. S. (1958).Theory and method of scaling. New York: Wiley.Google Scholar
  34. Tversky, A., &Krantz, D. H. (1969). Similarity of schematic faces: A test of interdimensional additivity.Perception & Psychophysics,5, 124–128.Google Scholar
  35. Tversky, A., &Krantz, D. H. (1970). The dimensional representation and the metric structure of similarity data.Journal of Mathematical Psychology,7, 572–596.CrossRefGoogle Scholar
  36. Wender, K. (1971). A test of independence of dimensions in multidimensional scaling.Perception & Psychophysics,10, 30–32.Google Scholar
  37. Wiener-Ehrlich, W. K. (1978). Dimensional and metric structures in multidimensional stimuli.Perception & Psychophysics,24, 399–414.CrossRefGoogle Scholar
  38. Wright, H. (1965). Precision of color differences derived from a multidimensional scaling experiment.Journal of the Optical Society of America,55, 1650–1655.CrossRefGoogle Scholar
  39. Wyszecki, G., &Stiles, W. S. (1982).Color science: Concepts and methods. quantitative data and formulae. New York: Wiley.Google Scholar
  40. Yager, D., &Taywr, E. (1970). Experimental measures and theoretical account of hue scaling as a function of luminance.Perception & Psychophysics,7, 360–364.Google Scholar

Copyright information

© Psychonomic Society, Inc. 1988

Authors and Affiliations

  • Barbara Burns
    • 1
  • Bryan E. Shepp
    • 2
  1. 1.Mount Holyoke CollegeSouth Hadley
  2. 2.Brown UniversityProvidence

Personalised recommendations