Perception & Psychophysics

, Volume 57, Issue 6, pp 802–816 | Cite as

Spatial and temporal factors determine auditory-visual interactions in human saccadic eye movements

  • M. A. FrensEmail author
  • A. J. Van Opstal
  • R. F. Van Der Willigen


In this paper, we show that human saccadic eye movements toward a visual target are generated with a reduced latency when this target is spatially and temporally aligned with an irrelevant auditory nontarget. This effect gradually disappears if the temporal and/or spatial alignment of the visual and auditory stimuli are changed. When subjects are able to accurately localize the auditory stimulus in two dimensions, the spatial dependence of the reduction in latency depends on the actual radial distance between the auditory and the visual stimulus. If, however, only the azimuth of the sound source can be determined by the subjects, the horizontal target separation determines the strength of the interaction. Neither saccade accuracy nor saccade kinematics were affected in these paradigms. We propose that, in addition to an aspecific warning signal, the reduction of saccadic latency is due to interactions that take place at a multimodal stage of saccade programming, where theperceived positions of visual and auditory stimuli are represented in a common frame of reference. This hypothesis is in agreement with our finding that the saccades often are initially directed to the average position of the visual and the auditory target, provided that their spatial separation is not too large. Striking similarities with electrophysiological findings on multisensory interactions in the deep layers of the midbrain superior colliculus are discussed.


Auditory Stimulus Superior Colliculus Sound Source Visual Target Saccadic Latency 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Bahill, A. T., Clark, M. R., &Stark, L. (1975). The main sequence: A tool for studying human eye movements.Mathematical Biosciences,24, 191–204.CrossRefGoogle Scholar
  2. Bertelson, P., &Tisseyre, F. (1969). The time course of preparation: Confirmatory results with visual and auditory warning signals.Acta Psychologica,30, 145–154.CrossRefGoogle Scholar
  3. Blauert, J. (1983).Spatial hearing: The psychophysics of human sound localization. Cambridge, MA: MIT Press.Google Scholar
  4. Bruce, C. J., &Goldberg, M. E. (1985). Primate frontal eye fields: I. Single neurons discharging before saccades.Journal of Neurophysiology,53, 603–635.PubMedGoogle Scholar
  5. Collewijn, H., Van der Mark, F., &Jansen, T. J. (1975). Precise recording of human eye movements.Vision Research,15, 447–450.CrossRefPubMedGoogle Scholar
  6. Findlay, J. M. (1982). Global visual processing for saccadic eye movements.Vision Research,22, 1033–1045.CrossRefPubMedGoogle Scholar
  7. Fischer, B., &Weber, H. (1993). Express saccades and visual attention.Behavioral & Brain Sciences,16, 553–610.CrossRefGoogle Scholar
  8. Frens, M. A., &Van Opstal, A. J. (1994). Auditory-evoked saccades in two dimensions: Dynamical characteristics, influence of eye position, and sound source spectrum. In J. Delgado-García, E. Godaux, & P. P. Vidal (Eds.),Neural mechanisms underlying gaze control (pp. 329–339). Oxford: Pergamon Press.Google Scholar
  9. Gielen, C. C. A. M., Schmidt, R. A., &Van den Heuvel, P. J. M. (1983). On the nature of intersensory facilitation of reaction time.Perception & Psychophysics,34, 161–168.Google Scholar
  10. Glimcher, P. W., &Sparks, D. L. (1993). Representation of averaging saccades in the superior colliculus of the monkey.Experimental Brain Research,95, 429–435.CrossRefGoogle Scholar
  11. He, P. Y., &Kowler, E. (1989). The role of location probability in the programming of saccades: Implications for “center-of-gravity” tendencies.Vision Research,29, 1165–1181.CrossRefPubMedGoogle Scholar
  12. Hughes, H. C., Reuter-Lorenz, P. A., Nozawa, G., &Fendrich, R. (1994). Visual-auditory interactions in sensorimotor processing: Saccades versus manual responses.Journal of Experimental Psychology: Human Perception & Performance,20, 131–153.CrossRefGoogle Scholar
  13. Irvine, D. R. F. (1986). The auditory brainstem. In D. Ottoson (Ed.),Progress in sensory physiology (Vol. 7). Berlin: Springer-Verlag.Google Scholar
  14. Jay, M. F., &Sparks, D. L. (1987). Sensorimotor integration in the primate superior colliculus. I. Motor convergence.Journal of Neurophysiology,57, 22–34.PubMedGoogle Scholar
  15. Lee, C., Chung, S., Kim, J., &Park, J. (1991). Auditory facilitation of visually guided saccades.Society for Neuroscience Abstracts,17, 862.Google Scholar
  16. Lueck, C. J., Crawford, T. J., Savage, C. J., &Kennard, C. (1990). Auditory-visual interaction in the generation of saccades in man.Experimental Brain Research,82, 149–157.CrossRefGoogle Scholar
  17. Manly, B. F. J. (1991).Randomization and Monte Carlo methods in biology. London: Chapman & Hall.Google Scholar
  18. McIlwain, J. T. (1982). Lateral spread of neural excitation during microstimulation in the intermediate gray layer of cat’s superior colliculus.Journal of Neurophysiology,47, 167–178.PubMedGoogle Scholar
  19. Meredith, M. A., Nemitz, J. W., &Stein, B. E. (1987). Determinants of multisensory integration in superior colliculus neurons: I. Temporal factors.Journal of Neuroscience,10, 3215–3229.Google Scholar
  20. Meredith, M. A., &Stein, B. E. (1986a). Spatial factors determine the activity of multisensory neurons in cat superior colliculus.Brain Research,365, 350–354.CrossRefPubMedGoogle Scholar
  21. Meredith, M. A., &Stein, B. E. (1986b). Visual, auditory and somatosensory convergence on cells in superior colliculus results in multisensory integration.Journal of Neurophysiology,56, 640–662.PubMedGoogle Scholar
  22. Munoz, D. P., &Wurtz, R. B. (1993). Fixation cells in monkey superior colliculus: II. Reversible activation and deactivation.Journal of Neurophysiology,70, 576–589.PubMedGoogle Scholar
  23. Ottes, F. P., Van Gisbergen, J. A. M., &Eggermont, J. J. (1984). Metrics of saccade responses to visual double stimuli: Two different modes.Vision Research,24, 1169–1179.CrossRefPubMedGoogle Scholar
  24. Perrott, D. R., Saberi, K., Brown, K., &Strybel, T. Z. (1990). Auditory psychomotor coordination and visual search performance.Perception & Psychophysics,48, 214–226.Google Scholar
  25. Press, W. H., Flannery, B. P., Teukolsky, S. A., &Vettering, W. T. (1992).Numerical recipes in C (2nd ed.). Cambridge: Cambridge University Press.Google Scholar
  26. Raab, D. H. (1962). Statistical facilitation of simple reaction times.Transactions of the New York Academy of Sciences,24, 574–590.PubMedGoogle Scholar
  27. Robinson, D. A. (1972). Eye movements evoked by collicular stimulation in the alert monkey.Vision Research,12, 1795–1808.CrossRefPubMedGoogle Scholar
  28. Ross, S. M., &Ross, L. E. (1981). Saccade latency and warning signals: Effect of auditory and visual stimulus onset and offset.Perception & Psychophysics,29, 429–437.Google Scholar
  29. Russo, G. S., &Bruce, C. J. (1994). Frontal eye field activity preceding aurally guided saccades.Journal of Neurophysiology,71, 1250–1253.PubMedGoogle Scholar
  30. Simon, J. R., &Craft, J. L. (1970). Effects of an irrelevant auditory stimulus on visual choice reaction time.Journal of Experimental Psychology,86, 272–274.CrossRefPubMedGoogle Scholar
  31. Sparks, D. L., Holland, R., &Guthrie, B. L. (1976). Size and distribution of movement fields in the monkey superior colliculus.Brain Research,113, 21–34.CrossRefPubMedGoogle Scholar
  32. Stein, B. E., Hunneycutt, W. S., &Meredith, M. A. (1988). Neurons and behaviour: The same rules of multisensory integration apply.Brain Research,448, 355–358.CrossRefPubMedGoogle Scholar
  33. Stein, B. E., &Meredith, M. A. (1993).The merging of the senses. Cambridge, MA: MIT Press.Google Scholar
  34. Van Opstal, A. J., Frens, M. A., &Van der Willigen, R. F. (1993). A spatial component for auditory—visual interactions in human saccadic eye movements.European Journal of Neuroscience,6 (Suppl.), 273.Google Scholar
  35. Van Opstal, A. J., &Van Gisbergen, J. A. M. (1990). Role of monkey superior colliculus in saccade averaging.Experimental Brain Research,79, 143–149.Google Scholar
  36. Wallace, M. T., Meredith, M. A., &Stein, B. E. (1993). Converging influences from visual, auditory, and somatosensory cortices onto output neurons of the superior colliculus.Journal of Neurophysiology,69, 1797–1809.PubMedGoogle Scholar
  37. Wilkinson, L. K., Meredith, M. A., &Stein, B. E. (1992). Cortical deactivation disrupts multisensory integration.Society for Neuroscience Abstracts,18, 1031.Google Scholar
  38. Zahn, J. R., Abel, L. A., &Dell’Osso, L. F. (1978). Audio-ocular response characteristics.Sensory Processes,2, 32–37.PubMedGoogle Scholar

Copyright information

© Psychonomic Society, Inc. 1995

Authors and Affiliations

  • M. A. Frens
    • 1
    Email author
  • A. J. Van Opstal
    • 1
  • R. F. Van Der Willigen
    • 1
  1. 1.Department of Medical Physics and BiophysicsUniversity of NijmegenNijmegenThe Netherlands

Personalised recommendations