Perception & Psychophysics

, Volume 67, Issue 2, pp 345–353 | Cite as

A spatial explanation for synchrony biases in perceptual grouping: Consequences for the temporal-binding hypothesis

  • Guy Wallis


If two images are shown in rapid sequential order, they are perceived as a single, fused image. Despite this, recent studies have revealed that fundamental perceptual processes are influenced by extremely brief temporal offsets in stimulus presentation. Some researchers have suggested that this is due to the action of a corticaltemporal-binding mechanism, which would serve to keep multiple mental representations of one object distinct from those of other objects. There is now gathering evidence that these studies should be reassessed. This article describes evidence for sensitivity to fixational eye and head movements, which provides a purely spatial explanation for the earlier results. Taken in conjunction with other studies, the work serves to undermine the current body of behavioral evidence for a temporal-binding mechanism.


Image Motion Perceptual Grouping Binding Problem Temporal Asynchrony Spatial Explanation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Adelson, E. H., &Farid, H. (1999). Filtering reveals form in temporally structured displays.Science,286, 2231a.CrossRefGoogle Scholar
  2. Adler, F. H., &Fliegelman, F. (1934). Influence of fixation on visual acuity.Archives of Ophthalmology,12, 475–483.Google Scholar
  3. Beaudot, W. H. (2002). Role of onset asynchrony in contour integration.Vision Research,42, 1–9.CrossRefPubMedGoogle Scholar
  4. Ben-Av, M., &Sagi, D. (1995). Perceptual grouping by similarity and proximity: Experimental results can be predicted by intensity autocorrelations.Vision Research,35, 853–866.CrossRefPubMedGoogle Scholar
  5. Bolger, C., Bojanic, S., Sheahan, N., Coakley, D., &Malone, J. (1999). Dominant frequency content of ocular microtremor from normal subjects.Vision Research,39, 1911–1915.CrossRefPubMedGoogle Scholar
  6. Carpenter, R. H. S. (1988).Movements of the eyes. London: Pion.Google Scholar
  7. Chelazzi, L., Duncan, J., Miller, E., &Desimone, R. (1998). Responses of neurons in inferior temporal cortex during memory-guided visual search.Journal of Neurophysiology,80, 2918–2940.PubMedGoogle Scholar
  8. Chelazzi, L., Miller, E., Duncan, J., &Desimone, R. (2001). Responses of neurons in macaque area V4 during memory-guided visual search.Cerebral Cortex,11, 761–772.CrossRefPubMedGoogle Scholar
  9. Coakley, D. (1983).Minute eye movement and brain stem function. Boca Raton, FL: CRC Press.Google Scholar
  10. Dakin, S. C., &Bex, P. J. (2002). Role of synchrony in contour binding: Some transient doubts sustained.Journal of the Optical Society of America A,19, 678–686.CrossRefGoogle Scholar
  11. Desimone, R., Miller, E., Chelazzi, L., &Lueschow, A. (1994). Multiple memory systems in visual cortex. In M. S. Gazzaniga (Ed.),Cognitive neurosciences (pp. 475–486). Cambridge, MA: MIT Press.Google Scholar
  12. Fahle, M. (1993). Figure-ground discrimination from temporal information.Proceedings of the Royal Society of London: Series B,254, 199–203.CrossRefGoogle Scholar
  13. Fahle, M., &Koch, C. (1995). Spatial displacement, but not temporal asynchrony, destroys figural binding.Vision Research,35, 491–494.CrossRefPubMedGoogle Scholar
  14. Farah, M. (1990).Visual agnosia: Disorders of object recognition and what they can tell us about normal vision. Cambridge, MA: MIT Press.Google Scholar
  15. Farid, H. (2002). Temporal synchrony in perceptual grouping: A critique.Trends in Cognitive Sciences,6, 284–288.CrossRefPubMedGoogle Scholar
  16. Farid, H., &Adelson, E. (2001). Synchrony does not promote grouping in temporally structured displays.Nature Neuroscience,4, 875–876.CrossRefPubMedGoogle Scholar
  17. Felleman, D. J., &Van Essen, D. C. (1991). Distributed hierarchical processing in the primate cerebral cortex.Cerebral Cortex,1, 1–47.CrossRefPubMedGoogle Scholar
  18. Ferman, L., Collewijn, H., Jansen, T. C., &Van den Berg, A. V. (1987). Human gaze stability in the horizontal, vertical and torsional direction during voluntary head movements, evaluated with a threedimensional scleral induction coil technique.Vision Research,27, 811–828.CrossRefPubMedGoogle Scholar
  19. Green, D. M., &Swets, J. A. (1974).Signal detection theory and psychophysics. Huntington, NY: Krieger.Google Scholar
  20. Kandil, F., &Fahle, M. (2001). Purely temporal figure-ground segregation.European Journal of Neuroscience,13, 2004–2008.CrossRefPubMedGoogle Scholar
  21. Keele, S., Cohen, A., Ivry, R., Liotti, M., &Yee, P. (1988). Tests of a temporal theory of attentional binding.Journal of Experimental Psychology: Human Perception & Performance,14, 444–452.CrossRefGoogle Scholar
  22. Kuhn, M. (2002). Optical time-domain eavesdropping risks of CRT displays. InProceedings of the IEEE Symposium on Security and Privacy (pp. 3–18). Los Alamitos, CA: IEEE Computer Society Press.Google Scholar
  23. Lee, S.-H., &Blake, R. (1999a). Filtering reveals form in temporally structured displays: Response.Science,286, 2231a.CrossRefGoogle Scholar
  24. Lee, S.-H., &Blake, R. (1999b). Visual form created solely from temporal structure.Science,284, 1165–1168.CrossRefPubMedGoogle Scholar
  25. Lee, S.-H., &Blake, R. (2001). Neural synergy in visual grouping: When good continuation meets common fate.Vision Research,41, 2057–2064.CrossRefPubMedGoogle Scholar
  26. Leonards, U., Singer, W., &Fahle, M. (1996). The influence of temporal phase differences on texture segmentation.Vision Research,36, 2689–2697.CrossRefPubMedGoogle Scholar
  27. Malsburg, C. von der (1995). Binding in models of perception and brain function.Current Opinion in Neurobiology,5, 520–526.CrossRefPubMedGoogle Scholar
  28. Mel, B. W., &Fiser, J. (2000). Minimizing binding errors using learned conjunctive features.Neural Computation,12, 731–762.CrossRefPubMedGoogle Scholar
  29. Mon-Williams, M., &Wann, J. P. (1996). An illusion that avoids focus.Proceedings of the Royal Society of London: Series B,263, 573–578.CrossRefGoogle Scholar
  30. Morgan, M., &Castet, E. (2001). High temporal frequency synchrony is insufficient for perceptual grouping.Proceedings of the Royal Society of London: Series B,269, 513–516.CrossRefGoogle Scholar
  31. Motter, B. (1993). Focal attention produces spatially selective processing in visual cortical areas V1, V2, and V4 in the presence of competing stimuli.Journal of Neurophysiology,70, 909–919.PubMedGoogle Scholar
  32. Murakami, I., &Cavanagh, P. (1998). A jitter after-effect reveals motion-based stabilization of vision.Nature,395, 798–801.CrossRefPubMedGoogle Scholar
  33. O’Regan, J. (1992). Solving the “real” mysteries of visual perception: The world as an outside memory.Canadian Journal of Psychology,46, 461–488.PubMedGoogle Scholar
  34. Parton, A., Donnelly, N., &Usher, M. (2001). The effects of temporal synchrony on the perceived organization of elements in spatially symmetric and asymmetric grids.Visual Cognition,8, 637–654.CrossRefGoogle Scholar
  35. Ratliff, F., &Riggs, L. (1950). Involuntary motions of the eye during monocular fixation.Journal of Experimental Psychology,40, 687–701.CrossRefPubMedGoogle Scholar
  36. Reynolds, J. H., &Desimone, R. (1999). The role of neural mechanisms of attention in solving the binding problem.Neuron,24, 19–29.CrossRefPubMedGoogle Scholar
  37. Riesenhuber, M., &Poggio, T. (1999). Are cortical models bound by the “binding problem”?Neuron,24, 87–93.CrossRefPubMedGoogle Scholar
  38. Robertson, L. (2003). Binding, spatial attention and perceptual awareness.Nature Reviews Neuroscience,4, 93–102.CrossRefPubMedGoogle Scholar
  39. Rolls, E. T., Aggelopoulos, N. C., &Zheng, F. (2003). The receptive fields of inferior temporal cortex neurons in natural scenes.Journal of Neuroscience,23, 339–348.PubMedGoogle Scholar
  40. Rousselet, G. A., Fabre-Thorpe, M., &Thorpe, S. J. (2002). Parallel processing in high-level categorization of natural images.Nature Neuroscience,5, 629–630.PubMedGoogle Scholar
  41. Sherr, S. (1993).Electronic displays. New York: Wiley.Google Scholar
  42. Singer, W., &Gray, C. (1995). Visual feature integration and the temporal correlation hypothesis.Annual Review of Neuroscience,18, 555–586.CrossRefPubMedGoogle Scholar
  43. Tovee, M. J., &Rolls, E. T. (1992). Oscillatory activity is not evident in the primate temporal visual cortex with static stimuli.Neuro-Report,3, 369–372.Google Scholar
  44. Treisman, A. (1998). Feature binding, attention and object perception.Philosophical Transactions of the Royal Society of London: Series B,353, 1295–1306.CrossRefGoogle Scholar
  45. Ungerleider, L., &Haxby, J. (1994). “What” and “where” in the human brain.Current Opinion in Neurobiology,4, 157–165.CrossRefPubMedGoogle Scholar
  46. Usher, M., &Donnelly, N. (1998). Visual synchrony affects binding and segmentation in perception.Nature,394, 179–182.CrossRefPubMedGoogle Scholar
  47. Wallis, G., &Rolls, E. (1997). A model of invariant object recognition in the visual system.Progress in Neurobiology,51, 167–194.CrossRefPubMedGoogle Scholar
  48. Wertheimer, M. (1923). Untersuchungen zur Lehre von der Gestalt.Psychologische Forschung,4, 301–350.CrossRefGoogle Scholar
  49. Westheimer, G., &McKee, S. (1977). Perception of temporal order in adjacent visual stimuli.Vision Research,17, 887–892.CrossRefPubMedGoogle Scholar
  50. Wolfe, J. (1994). Visual search in continuous, naturalistic stimuli.Vision Research,34, 1187–1195.CrossRefPubMedGoogle Scholar
  51. Zeki, S., Watson, J. D. G., Lueck, C. J., Friston, K. J., Kennard, C., &Frackowiak, R. S. J. (1991). A direct demonstration of functional specialization in human visual cortex.Journal of Neuroscience,11, 641–649.PubMedGoogle Scholar

Copyright information

© Psychonomic Society, Inc. 2005

Authors and Affiliations

  • Guy Wallis
    • 1
    • 2
  1. 1.Max Planck Institute for Biological CyberneticsTübingenGermany
  2. 2.Perception and Motor Systems LaboratoryUniversity of QueenslandAustralia

Personalised recommendations