Advertisement

Connectionism: Is it a paradigm shift for psychology?

  • Walter Schneider
Session I Presidential Address

Abstract

Connectionism is a method of modeling cognition as the interaction of neuron-like units. Connectionism has received a gread deal of interest and may represent a paradigm shift for psychology. The nature of a paradigm shift (Kuhn, 1970) is reviewed with respect to connectionism. The reader is provided an overview on connectionism including: an introduction to connectionist modeling, new issues it emphasizes, a brief history, its developing sociopolitical impact, theoretical impact, and empirical impact. Cautions, concerns, and enthusiasm for connectionism are expressed.

Keywords

Paradigm Shift Learning Rule Unsupervised Learning Hide Unit Semantic Network 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Ackley, D. H., Hinton, G. E., &Sejnowski, T. J. (1985). A learning algorithm for Boltzmann machinesCognitive Science,9, 147–169.CrossRefGoogle Scholar
  2. Anderson, J. A. (1983). Cognitive and psychological computation with neural models.IEEE Transactions on Systems, Man, & Cybernetics,13, 799–815.Google Scholar
  3. Anderson, I. A., &Mozer, M. C. (1981). Categorization and selective neurons. In G. E. Hinton & J. A. Anderson (Eds.),Parallel models of associative memory (pp. 213–236). Hillsdale, NJ: ErlbaumGoogle Scholar
  4. Anderson, J R (1983)The architecture of cognition Cambridge, MA Harvard University Press.Google Scholar
  5. Barto, A G. &Anandan, P. (1985). Pattern recognizing stochastic learning automata.IEEE Transactions on Systems, Man, & Cybernetics,15, 360–375.Google Scholar
  6. Elman, J., &Zipser, D (1987).Learning the hidden structure of speech (Tech. Rep. No. ICS 8701). Institute for Cognitive Science, University of California, San Diego, CA.Google Scholar
  7. Golden, R. M. (1986). A developmental neural model of visual word perception.Cognitive Science,10, 241–276.CrossRefGoogle Scholar
  8. Hammerstrom, D. (1986, August).Neural computing: A new paradigm for LLSl computer architecture. Paper given at the Attention and Brain Communication Workshop, Jackson, Wyoming.Google Scholar
  9. Hinton, G. E (1986). Learning distributed representations of concepts.The eighth annual conference of the cognitive science society (pp. 1–12). Hillsdale, NJ: Erlbaum.Google Scholar
  10. Hinton, G. E., &Anderson, J. A (Eds.). (1981).Parallel models of associative memory Hillsdale, NJ: Erlbaum.Google Scholar
  11. Hinton, G. E., &Nowlan, S. J. (in press).How learning can guide evolution (Tech Rep.). Carnegie-Mellon University, Pittsburgh, PA.Google Scholar
  12. Hinton, G. E., &Plaut, O. C. (in press).Using fast weights to deblur old memories and assimilate new ones (Tech. Rep.) Carnegie-Mellon University, Pittsburgh, PA.Google Scholar
  13. Hinton, G. E., &Sejnowski, T. J (1986). Learning and relearning in Boltzmann Machines. In D. E. Rumelhart & J. L. McClelland (Eds.),Parnllel distributed processing: Explorations in the microstructure of cognition. Volume 1: Foundations (pp. 282–317). Cam-bridge, MA: MIT Press.Google Scholar
  14. Kuhn, T. S. (1970).The structure of scientific revolutions. Chicago University of Chicago Press.Google Scholar
  15. Massaro, D. W. (1986, November)Connections models of the mind Paper presented at Psychonomic Society meeting, New Orleans, LAGoogle Scholar
  16. McClelland, J. L. (1986). Resource requirements of standard and programmable nets In D. E. Rumelhart & J. L. McClelland (Eds.).Parallel distributed processing. Explorations in the microstructures of cognition. Volume I: Foundations (pp. 460–487). Cambridge, MA: MIT PressGoogle Scholar
  17. McClelland, J. L, &Kawamoto, A. H. (1986). Mechanisms of sentence processing: Assigning roles to constituents. In J. L. McClelland & D. E. Rumelhart (Eds.),Parallel distributed processing: Explorations in the microstructure of cognition. Volume 2: Psychological and biological models (pp. 272–325). Cambridge, MA: MIT Press.Google Scholar
  18. McClelland, J. L., &Rumelhart, D. E. (1981) An interactive activation model of context effects in letter perception: Part 1. An account of basic findings.Psychological Review,88, 375–407.CrossRefGoogle Scholar
  19. McClelland, J. L, &Rumelhart, D. E. (Eds.). (1986).Parallel distributed processing: Explorations in the microstructure of cognition. Volume 2: Psychological and biological models. Cambridge, MA: MIT PressGoogle Scholar
  20. Minsky, M., &Papert, S. (1969).Perceptrons. Cambridge, MA: MIT Press.Google Scholar
  21. Norman, D. A. (Ed.). (1970).Models of human memory. London: Academic Press.Google Scholar
  22. Norman, D. A. (1986). Reflections on cognition and parallel distributed processing. In J. L. McClelland, & D. E. Rumelhart (Eds.),Parallel distributed processing: Explorations in the microstructure of cognition. Volume 2. Psychological and biological models (pp. 531–546). Cambridge, MA: MIT Press.Google Scholar
  23. Rosenberg, C. R, &Sejnowski, T. J. (1986). The spacing effect on NETtalk, a massively-parallel network.The Eighth Annual Conference of the Cognitive Science Society (pp 72–89). Hillsdale, NJ: Erlbaum.Google Scholar
  24. Rosenblatt, F. (1962).Principles of neurodynamics New York: SpartanGoogle Scholar
  25. Rumelhart, D. E. (1980). Schemata: The building blocks of cognition. In R. Spiro, B. Bruce, & W. Brewer (Eds.),Theoretical issues in reading comprehension (pp 33–58). Hillsdale, NJ: Erlbaum.Google Scholar
  26. Rumelhart, D. E., Hinton, G E., & Williams, R. J. (1986) Learning internal representations by error propagation. In D. E Rumelhart & J L McClelland (Eds.),Parallel distributed processing.Explorations in the microstructure of cognition. Volume 1: Foundations(pp. 318–362). Cambridge, MA: MIT Press.Google Scholar
  27. Rumelhart, D. E., &McClelland, J. L. (1986a). On learning the past tenses of English verbs. In J. L. McClelland & D. E. Rumelhart (Eds.),Parallel distributed processing: Explorations in the microstructure of cognition. Volume 2: Psychological and biological models(pp. 216–271). Cambridge, MA: MIT Press.Google Scholar
  28. Rumelhart, D. E., & McClelland, J. L. (Eds.). (1986b).Parallel distributed processing: Explorations in the microstructure of cognition. Volume 1: Foundations. Cambridge, MA: MIT Press.Google Scholar
  29. Rumelhart, D. E., Smolensky, P., McClelland, J. L., &Hinton, G. E. (1986). Schemata and sequential thought processes in PDP models. In J. L. McClelland & D. E. Rumelhart (Eds.),Parallel distributed processing: Explorations in the microstructure of cognition. Volume 2: Psychological and biological models (pp. 7–57). Cambridge, MA: MIT Press.Google Scholar
  30. Schneider, W., &Detweiler, M. (1987). A connectioiust/control architecture for working memory. In G. H. Bower (Ed.),The psychology of learning and motivation (Vol. 21). New York: Academic Press.Google Scholar
  31. Schneider, W., &Mumme, D. (1987).Attention, automaticity and the capturing of knowledge: A two-level cognitive architecture. Manuscript submitted for publication.Google Scholar
  32. Sejnowski, T. J. (1986). Open questions about computation in cerebral cortex. In J. L. McClelland & D. E. Rumelhart (Eds.),Parallel distributed processing: Explorations in the microstructure of cognition: Volume 2: Psychological and biological models (pp. 372–389). Cambridge,MA: MIT Press.Google Scholar
  33. Sejnowski, T. J., &Rosenberg, C. R. (1986).NETtalk: A parallel network that learns to read aloud. (Tech. Rep. No. JHU/EECS-86/01). The Johns Hopkins University Electrical Engineering and Computer Science, Baltimore, MD.Google Scholar
  34. Shiffrin, R. M., &Schneider, W. (1977). Controlled and automatic human information processing. II: Perceptual learning, automatic attending, and a general theory.Psychological Review,84, 127–190.CrossRefGoogle Scholar
  35. Wickelgren, W. A. (1969). Context-sensitive coding, associative memory, and serial order in (speech) behavior.Psychological Review,76, 1–15.CrossRefGoogle Scholar

Copyright information

© Psychonomic Society, Inc. 1987

Authors and Affiliations

  • Walter Schneider
    • 1
  1. 1.517 Learning Research & Development CenterUniversity of PittsburghPittsburgh

Personalised recommendations