Corrections for extreme proportions and their biasing effects on estimated values ofd

Abstract

Estimatingd′ from extreme false-alarm or hit proportions (p = 0 orp = 1) requires the use of a correction, because thez score of such proportions takes on infinite values. Two commonly used corrections are compared by using Monte-Carlo simulations. The first is the 1/(2N) rule for which an extreme proportion is corrected by this factor befored′ is calculated. The second is the log-linear rule for which each cell frequency in the contingency table is increased by 0.5 irrespective of the contents of each cell. Results showed that the log-linear rule resulted in less biased estimates ofd′ that always underestimated populationd′. The 1/(2N) rule, apart from being more biased, could either over- or underestimate populationd′.

References

  1. Davison, M. C., &Tustin, R. D. (1978). The relation between the generalized matching law and signal-detection theory.Journal of the Experimental Analysis of Behavior,29, 331–336.

    Article  PubMed  Google Scholar 

  2. Dorfman, D. D., &Alf, E., Jr. (1969). Maximum likelihood estimation of parameters of signal detection theory and determination of confidence intervals—rating-method data.Journal of Mathematical Psychology,6, 487–496.

    Article  Google Scholar 

  3. Egan, J. P. (1975).Signal detection theory and ROC analysis. New York: Academic Press.

    Google Scholar 

  4. Fienberg, S. E. (1980).The analysis of cross-classified categorical data (2nd ed.). Cambridge, MA: MIT Press.

    Google Scholar 

  5. Goodman, L. A. (1970). The multivariate analysis of qualitative data: Interactions among multiple classifications.Journal of the American Statistical Association,65, 226–256.

    Article  Google Scholar 

  6. Gourevitch, V., &Galanter, E. (1967). A significance test for oneparameter isosensitivity functions.Psychometrika,32, 25–33.

    Article  PubMed  Google Scholar 

  7. Green, D. M., &Swets, J. A. (1966).Signal detection theory and psychophysics. New York: Wiley.

    Google Scholar 

  8. Knoke, D., &Burke, P. J. (1980).Log-linear models (Sage University Paper Series on Quantitative Application in the Social Sciences, 07-020). Beverly Hills: Sage Publications.

    Google Scholar 

  9. Laming, D. (1986).Sensory analysis. New York: Academic Press.

    Google Scholar 

  10. Luce, R. D. (1959).Individual choice behavior. New York: Wiley.

    Google Scholar 

  11. Luce, R. D. (1963). Detection and recognitizon. In R. D. Luce, R. R. Bush, & E. Galanter (Eds.),Handbook of mathematical psychology (pp. 103–189). New York: Wiley.

    Google Scholar 

  12. Macmillan, N. A., &Creelman, C. D. (1991).Detection theory: A user’s guide. New York: Cambridge University Press.

    Google Scholar 

  13. Macmillan, N. A., &Kaplan, H. L. (1985). Detection theory analysis of group data: Estimating sensitivity from average hit and falsealarm rates.Psychological Bulletin,98, 185–199.

    Article  PubMed  Google Scholar 

  14. McNicol, D. (1972).A primer of signal detection theory. London: Allen & Unwin.

    Google Scholar 

  15. Metz, C. E. (1989). Some practical issues of experimental design and data analysis in radiological ROC studies.Investigative Radiology,24, 234–245.

    Article  PubMed  Google Scholar 

  16. Snodgrass, J. G., &Corwin, J. (1988). Pragmatics of measuring recognition memory: Applications to dementia and amnesia.Journal of Experimental Psychology: General,117, 34–50.

    Article  Google Scholar 

  17. Wickens, T. D. (1992). Maximum-likelihood estimation of a multivariate Gaussian rating model with excluded data.Journal of Mathematical Psychology,36, 213–234.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Michael J. Hautus.

Additional information

I would like to thank John Irwin for his valuable comments on the draft of this manuscript.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Hautus, M.J. Corrections for extreme proportions and their biasing effects on estimated values ofd′. Behavior Research Methods, Instruments, & Computers 27, 46–51 (1995). https://doi.org/10.3758/BF03203619

Download citation

Keywords

  • Cell Frequency
  • CORWIN
  • Maximum Likelihood Estima
  • Linear Rule
  • Sensory Evidence