Perception & Psychophysics

, Volume 33, Issue 2, pp 113–120 | Cite as

Quest: A Bayesian adaptive psychometric method

  • Andrew B. Watson
  • Denis G. Pelli


An adaptive psychometric procedure that places each trial at the current most probable Bayesian estimate of threshold is described. The procedure takes advantage of the common finding that the human psychometric function is invariant in form when expressed as a function of log intensity. The procedure is simple, fast, and efficient, and may be easily implemented on any computer.

Reference Note

  1. 1.
    Klein, S. Rapid determination of the psychometric function. Paper presented at the annual meeting of the American Academy of Optometry, Orlando, Florida, December 1981.Google Scholar


  1. Cornsweet, T. N. The staircase-method in psychophysics.American Journal of Psychology, 1962,75, 485–491.PubMedCrossRefGoogle Scholar
  2. Green, D. M., &Luce, R. D. Parallel psychometric functions from a set of independent detectors.Psychological Review, 1975,82, 483–486.CrossRefGoogle Scholar
  3. Hall, J. L. Maximum-likelihood sequential procedure for estimation of psychometric functions.Journal of the Acoustical Society of America, 1968,44, 370. (Abstract)CrossRefGoogle Scholar
  4. Hall, J. L. Hybrid adaptive procedure for estimation of psychometric functions.Journal of the Acoustical Society of America, 1981,69, 1763–1769.PubMedCrossRefGoogle Scholar
  5. Hoel.P. G., Port, S. C., &Stone, C. J.Introduction to statistical theory. Boston: Houghton Mifflin, 1971.Google Scholar
  6. Levitt, H. Transformed up-down methods in psychoacoustics.Journal of the Acoustical Society of America, 1971,49, 467–477.PubMedCrossRefGoogle Scholar
  7. Massof, R. W. Wavelength dependence of the shape of the foveal absolute threshold probability of detection functions.Vision Research, 1981,21, 995–1004.PubMedCrossRefGoogle Scholar
  8. Nachmias, J. On the psychometric function for contrast detection,Vision Research, 1981,21, 215–223.PubMedCrossRefGoogle Scholar
  9. Pavel, M. A new adaptive method for forced-choice experiments.Journal of the Optical Society of America, 1981,71, S48. (Abstract)Google Scholar
  10. Pentland, A. Maximum likelihood estimation: The best PEST.Perception & Psychophysics, 1980,28, 377–379.Google Scholar
  11. Quick, R. F. A vector magnitude model of contrast detection.Kybernetik, 1974,16, 65–67.PubMedCrossRefGoogle Scholar
  12. Roufs, J. A. J. Dynamic properties of vision—VI. Stochastic threshold fluctuations and their effect on flash-to-flicker sensitivity ratio.Vision Research, 1974,14, 871–888.PubMedCrossRefGoogle Scholar
  13. Taylor, M. M. On the efficiency of psychophysical measurement.Journal of the Acoustical Society of America, 1971,49, 505–508.PubMedCrossRefGoogle Scholar
  14. Taylor, M. M., &Creelman, C. D. PEST: Efficient estimates on probability functions.Journal of the Acoustical Society of America, 1967,41, 782–787.CrossRefGoogle Scholar
  15. Watson, A. B. Probability summation over time.Vision Research, 1979,19, 515–522.PubMedCrossRefGoogle Scholar
  16. Watson, A. B., &Pelli, D. G. The QUEST staircase procedure.Applied Vision Association Newsletter, 1979,14, 6–7.Google Scholar
  17. Weibull, W. A. A statistical distribution function of wide applicability.Journal of Applied Mechanics, 1951,18, 292–297.Google Scholar
  18. Wetherill, G. B., &Levitt, H. Sequential estimation of points on a psychometric function.British Journal of Mathematical and Statisttcal Psychology, 1965,18, 1–10.Google Scholar
  19. Wilks, S. S.Mathematical statistics. New York: Wiley, 1962.Google Scholar

Copyright information

© Psychonomic Society, Inc 1983

Authors and Affiliations

  • Andrew B. Watson
    • 1
    • 3
  • Denis G. Pelli
    • 2
  1. 1.NASA Ames Research CenterMoffett Field
  2. 2.Institute for Sensory ResearchSyracuse UniversitySyracuse
  3. 3.Department of PsychologyStanford UniversityStanford

Personalised recommendations