SPSS and SAS programs for determining the number of components using parallel analysis and Velicer’s MAP test

Abstract

Popular statistical software packages do not have the proper procedures for determining the number of components in factor and principal components analyses. Parallel analysis and Velicer’s minimum average partial (MAP) test are validated procedures, recommended widely by statisticians. However, many researchers continue to use alternative, simpler, but flawed procedures, such as the eigenvaluesgreater-than-one rule. Use of the proper procedures might be increased if these procedures could be conducted within familiar software environments. This paper describes brief and efficient programs for using SPSS and SAS to conduct parallel analyses and the MAP test.

References

  1. Brysbaert, M. (1991). Algorithms for randomness in the behavioral sciences: A tutorial.Behavior Research Methods, Instruments, & Computers,23, 45–60.

    Article  Google Scholar 

  2. Cattell, R. B., &Vogelmann, S. (1977). A comprehensive trial of the scree and KG criteria for determining the number of factors.Multivariate Behavioral Research,12, 289–325.

    Article  Google Scholar 

  3. Cliff, N. (1988). The eigenvalues-greater-than-one rule and the reliability of components.Psychological Bulletin,103, 276–279.

    Article  Google Scholar 

  4. Coovert, M. D., &McNelis, K. (1988). Determining the number of common factors in factor analysis: A review and program.Educational & Psychological Measurement,48, 687–692.

    Article  Google Scholar 

  5. Cota, A. A., Longman, R. S., Holden, R. R., &Fekken, G. C. (1993). Comparing different methods for implementing parallel analysis: A practical index of accuracy.Educational & Psychological Measurement,53, 865–875.

    Article  Google Scholar 

  6. Cota, A. A., Longman, R. S., Holden, R. R., Fekken, G. C., &Xinaris, S. (1993). Interpolating 95th percentile eigenvalues from random data: An empirical example.Educational & Psychological Measurement,53, 585–596.

    Article  Google Scholar 

  7. Crawford, C. B., &Koopman, P. (1979). Inter-rater reliability of scree test and mean square ratio test of number of factors.Perceptual & Motor Skills,49, 223–226.

    Google Scholar 

  8. Floyd, F. J., &Widaman, K. F. (1995). Factor analysis in the development and refinement of clinical assessment instruments.Psychological Assessment,7, 286–299.

    Article  Google Scholar 

  9. Glorfeld, L. W. (1995). An improvement on Horn’s parallel analysis methodology for selecting the correct number of factors to retain.Educational & Psychological Measurement,55, 377–393.

    Article  Google Scholar 

  10. Gorsuch, R. L. (1997). Exploratory factor analysis: Its role in item analysis.Journal of Personality Assessment,68, 532–560.

    Article  PubMed  Google Scholar 

  11. Harman, H. H. (1967).Modern factor analysis (2nd ed.). Chicago: University of Chicago Press.

    Google Scholar 

  12. Horn, J. L. (1965). A rationale and test for the number of factors in factor analysis.Psychometrika,30, 179–185.

    Article  PubMed  Google Scholar 

  13. Kaufman, J. D., &Dunlap, W. P. (2000). Determining the number of factors to retain: A Windows-based FORTRAN-IMSL program for parallel analysis.Behavior Research Methods, Instruments, & Computers,32, 389–395.

    Article  Google Scholar 

  14. Longman, R. S., Cota, A. A., Holden, R. R., &Fekken, G. C. (1989). PAM: A double-precision FORTRAN routine for the parallel analysis method in principal components analysis.Behavior Research Methods, Instruments, & Computers,21, 477–480.

    Article  Google Scholar 

  15. Merenda, P. F. (1997). A guide to the proper use of factor analysis in the conduct and reporting of research: Pitfalls to avoid.Measurement & Evaluation in Counseling & Development,30, 156–164.

    Google Scholar 

  16. Onghena, P. (1993). A theoretical and empirical comparison of mainframe, microcomputer, and pocket calculator pseudorandom number generators.Behavior Research Methods, Instruments, & Computers,25, 384–395.

    Article  Google Scholar 

  17. Reddon, J. R. (1985). MAPF and MAPS: Subroutines for the number of principal components.Applied Psychological Measurement,9, 97.

    Article  Google Scholar 

  18. Streiner, D. L. (1998). Factors affecting reliability of interpretations of scree plots.Psychological Reports,83, 687–694.

    Article  Google Scholar 

  19. Tinsley, H. E. A., &Tinsley, D. J. (1987). Uses of factor analysis in counseling psychology research.Journal of Counseling Psychology,34, 414–424.

    Article  Google Scholar 

  20. Turner, N. E. (1998). The effect of common variance and structure on random data eigenvalues: Implications for the accuracy of parallel analysis.Educational & Psychological Measurement,58, 541–568.

    Article  Google Scholar 

  21. Velicer, W. F. (1976). Determining the number of components from the matrix of partial correlations.Psychometrika,41, 321–327.

    Article  Google Scholar 

  22. Wood, J. M., Tataryn, D. J., &Gorsuch, R. L. (1996). Effects of under- and overextraction on principal axis factor analysis with varimax rotation.Psychological Methods,1, 354–365.

    Article  Google Scholar 

  23. Zwick, W. R., &Velicer, W. F. (1982). Factors influencing four rules for determining the number of components to retain.Multivariate Behavioral Research,17, 253–269.

    Article  Google Scholar 

  24. Zwick, W. R., &Velicer, W. F. (1986). Comparison of five rules for determining the number of components to retain.Psychological Bulletin,99, 432–442.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Brian P. O’connor.

Additional information

This work was supported by a grant from the Social Sciences and Humanities Research Council of Canada.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Cite this article

O’connor, B.P. SPSS and SAS programs for determining the number of components using parallel analysis and Velicer’s MAP test. Behavior Research Methods, Instruments, & Computers 32, 396–402 (2000). https://doi.org/10.3758/BF03200807

Download citation

Keywords

  • Behavior Research Method
  • Parallel Analysis
  • Random Data
  • Proper Procedure
  • Minimum Average Partial