Psychonomic Bulletin & Review

, Volume 1, Issue 2, pp 202–238 | Cite as

Guided Search 2.0 A revised model of visual search



An important component of routine visual behavior is the ability to find one item in a visual world filled with other, distracting items. This ability to performvisual search has been the subject of a large body of research in the past 15 years. This paper reviews the visual search literature and presents a model of human search behavior. Built upon the work of Neisser, Treisman, Julesz, and others, the model distinguishes between a preattentive, massively parallel stage that processes information about basic visual features (color, motion, various depth cues, etc.) across large portions of the visual field and a subsequent limited-capacity stage that performs other, more complex operations (e.g., face recognition, reading, object identification) over a limited portion of the visual field. The spatial deployment of the limited-capacity process is under attentional control. The heart of the guided search model is the idea that attentional deployment of limited resources isguided by the output of the earlier parallel processes. Guided Search 2.0 (GS2) is a revision of the model in which virtually all aspects of the model have been made more explicit and/or revised in light of new data. The paper is organized into four parts: Part 1 presents the model and the details of its computer simulation. Part 2 reviews the visual search literature on preattentive processing of basic features and shows how the GS2 simulation reproduces those results. Part 3 reviews the literature on the attentional deployment of limited-capacity processes in conjunction and serial searches and shows how the simulation handles those conditions. Finally, Part 4 deals with shortcomings of the model and unresolved issues.


Visual Search Search Task Target Trial Serial Search Search Asymmetry 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Adelson, E. H., &Bergen, J. R. (1991). The plenoptic function and the elements of early vision. In M. Landy & J. A. Movshon (Eds.),Computational models of visual processing (pp. 3–20). Cambridge, MA: MIT Press.Google Scholar
  2. Ahissar, M., &Hochstein, S. (1992). Perceptual learning: Interactions between task and stimulus specificities.Investigative Ophthalmology & Visual Science,33, 1262. (Abstract)Google Scholar
  3. Aks, D. J., &Enns, J. T. (1993). Early vision’s analysis of slant-from-texture.Investigative Ophthalmology & Visual Science,34, 1185. (Abstract)Google Scholar
  4. Alkhateeb, W. F., Morris, R. J., &Ruddock, K. H. (1990). Effects of stimulus complexity on simple spatial discriminations.Spatial Vision,5, 129–141.PubMedGoogle Scholar
  5. Allan, S. E., &Blough, D. S. (1989). Feature-based search asymmetries in pigeons and humans.Perception & Psychophysics,46, 456–464.Google Scholar
  6. Andersen, G. J. (1990). Focused attention in three-dimensional space.Perception & Psychophysics,47, 112–120.Google Scholar
  7. Andersen, G. J., &Kramer, A. F. (1993). Limits of focused attention in three-dimensional space.Perception & Psychophysics,53, 658–667.Google Scholar
  8. Andriesen, J. J., &Bouma, H. (1976). Eccentric vision: Adverse interactions between line segments.Vision Research,16, 71–78.Google Scholar
  9. Arguin, M., &Cavanagh, P. (1988). Parallel processing of two disjunctive targets.Perception & Psychophysics,44, 22–30.Google Scholar
  10. Ball, K. K., Beard, B. L., Roenker, D. L., Miller, R. L., &Griggs, D. S. (1988). Age and visual search: Expanding the useful field of view.Journal of the Optical Society of America A,5, 2210–2219.Google Scholar
  11. Ball, K. K., Owsley, C., Sloane, M. E., Roenker, D. L., &Bruni, J. R. (1993). Visual attention problems as a predictor of vehicle crashes among older drivers.Investigative Ophthalmology & Visual Science,34, 3110–3123.Google Scholar
  12. Ball, K. K., Roenker, D. L., &Bruni, J. R. (1990). Developmental changes in attention and visual search throughout adulthood. In J. T. Enns (Ed.),The development of attention: Research and theory (pp. 489–508). Amsterdam: Elsevier North-Holland.Google Scholar
  13. Baylis, G. C., &Driver, J. (1993). Visual attention and objects: Evidence for hierarchical coding of location.Journal of Experimental Psychology: Human Perception & Performance,19, 451–470.Google Scholar
  14. Ben-Av, M. B., Sagi, D., &Braun, J. (1992). Visual attention and perceptual grouping.Perception & Psychophysics,52, 277–294.Google Scholar
  15. Bergen, J. R., &Adelson, E. H. (1988). Early vision and texture perception.Nature,333, 363–364.PubMedGoogle Scholar
  16. Bergen, J. R., &Julesz, B. (1983). Rapid discrimination of visual patterns.IEEE Transactions on Systems, Man, & Cybernetics,SMC-13, 857–863.Google Scholar
  17. Biederman, I. (1987). Recognition-by-components: A theory of human image understanding.Psychological Review,94, 115–147.PubMedGoogle Scholar
  18. Blake, R. (1989). A neural theory of binocular rivalry.Psychological Review,96, 145–167.PubMedGoogle Scholar
  19. Bravo, M., &Blake, R. (1990). Preattentive vision and perceptual groups.Perception,19, 515–522.PubMedGoogle Scholar
  20. Bravo, M. J., &Nakayama, K. (1992). The role of attention in different visual-search tasks.Perception & Psychophysics,51, 465–472.Google Scholar
  21. Breese, B. B. (1909). Binocular rivalry.Psychological Review,16, 410–415.Google Scholar
  22. Brown, J. M., Enns, J. T., &Greene, H. (1993). Preattentive processing of line junctions can be altered by perceptual set.Investigative Ophthalmology & Visual Science,34, 1234. (Abstract)Google Scholar
  23. Brown, J. M., Weisstein, N., &May, J. G. (1992). Visual search for simple volumetric shapes.Perception & Psychophysics,51,40–48.Google Scholar
  24. Bülthoff, H. H., &Blake, A. (1989). Does the seeing brain know physics?Investigative Ophthalmology & Visual Science,30, 262. (Abstract)Google Scholar
  25. Bundesen, C. (1990). A theory of visual attention.Psychological Review,97, 523–547.PubMedGoogle Scholar
  26. Bundesen, C. (1991). Visual selection of features and objects: Is location special? A reinterpretation of Nissen’s (1985) findings.Perception & Psychophysics,50, 87–89.Google Scholar
  27. Bundesen, C., &Pedersen, L. F. (1983). Color segregation and visual search.Perception & Psychophysics,33, 487–493.Google Scholar
  28. Callaghan, T. C. (1984). Dimensional interaction of hue and brightness in preattentive field segregation.Perception & Psychophysics,36, 25–34.Google Scholar
  29. Carter, R. C. (1982). Visual search with color.Journal of Experimental Psychology: Human Perception & Performance,8, 127–136.Google Scholar
  30. Cavanagh, P., Arguin, M., &Treisman, A. (1990). Effect of surface medium on visual search for orientation and size features.Journal of Experimental Psychology: Human Perception & Performance,16, 479–492.Google Scholar
  31. Cave, K. R., &Pashler, H. (1994a).Visual selection mediated by location 1: Selecting successive visual objects. Manuscript submitted for publication.Google Scholar
  32. Cave, K. R., &Pashler, H. (1994b).Visual selection mediated by location 2: Selecting noncontiguous locations. Manuscript submitted for publication.Google Scholar
  33. Cave, K. R., &Wolfe, J. M. (1990). Modeling the role of parallel processing in visual search.Cognitive Psychology,22, 225–271.PubMedGoogle Scholar
  34. Cheal, M., &Lyon, D. (1989). Attention effects on form discrimination at different eccentricities.Quarterly Journal of Experimental Psychology,41A, 719–746.Google Scholar
  35. Cheal, M., &Lyon, D. (1992). Attention in visual search: Multiple search classes.Perception & Psychophysics,52, 113–138.Google Scholar
  36. Chelazzi, L., Miller, E. K., Duncan, J., &Desimone, R. (1993). Neural basis for visual search in inferior temporal cortex.Nature,363, 345–347.PubMedGoogle Scholar
  37. Chen, I., &DeValois, R. L. (1993). Even and odd symmetric mechanisms are equally involved in texture discrimination.Investigative Ophthalmology & Visual Science,34, 1289. (Abstract)Google Scholar
  38. Chen, L. (1982). Topological structure in visual perception.Science,218, 699–700.PubMedGoogle Scholar
  39. Chen, L. (1990). Holes and wholes: A reply to Rubin and Kanwisher.Perception & Psychophysics,47, 47–53.Google Scholar
  40. Chun, M. M., &Wolfe, J. M. (1994).Just say no: How are visual searches terminated when there is no target present? Manuscript submitted for publication.Google Scholar
  41. Chun, M. M., Wolfe, J. M., &Friedman-Hill, S. R. (1992). Texture gradients group within but not across feature maps.Investigative Ophthalmology & Visual Science,33, 960. (Abstract)Google Scholar
  42. Cohen, A. (1993). Asymmetries in visual search for conjunctive targets.Journal of Experimental Psychology: Human Perception & Performance,19, 775–797.Google Scholar
  43. Cohen, A., &Ivry, R. B. (1989). Illusory conjunction inside and outside the focus of attention.Journal of Experimental Psychology: Human Perception & Performance,15, 650–663.Google Scholar
  44. Cohen, A., &Ivry, R. B. (1991). Density effects in conjunction search: Evidence for a coarse location mechanism of feature integration.Journal of Experimental Psychology: Human Perception & Performance,17, 891–901.Google Scholar
  45. Cohen, A., &Rafal, R. D. (1991). Attention and feature integration: Illusory conjunctions in a patient with a parietal lobe lesion.Psychological Science,2, 106–110.Google Scholar
  46. Dehaene, S. (1989). Discriminability and dimensionality effects in visual search for featural conjunctions: A functional pop-out.Perception & Psychophysics,46, 72–80.Google Scholar
  47. Desimone, R., Schein, S. J., Moran, J., &Ungerleider, L. G. (1985). Contour, color and shape analysis beyond the striate cortex.Vision Research,25, 441–452.PubMedGoogle Scholar
  48. Desimone, R., &Ungerleider, L. G. (1989). Neural mechanisms of visual processing in monkeys. In F. Boiler & J. Grafman (Eds.),Handbook of neuropsychology (pp. 267–299). Amsterdam: Elsevier.Google Scholar
  49. Dick, M. (1989).Parallel and serial processes in motion detection. Unpublished doctoral dissertation, Weizmann Institute, Rehovot, Israel.Google Scholar
  50. Dick, M., Ullman, S., &Sagi, D. (1987). Parallel and serial processes in motion detection.Science,237, 400–402.PubMedGoogle Scholar
  51. Downing, B. D., &Gossman, J. R. (1970). Parallel processing of multidimensional stimuli.Perception & Psychophysics,8, 57–60.Google Scholar
  52. Driver, J., McLeod, P., &Dienes, Z. (1992a). Are direction and speed coded independently by the visual system? Evidence from visual search.Spatial Vision,6, 133–147.PubMedGoogle Scholar
  53. Driver, J., McLeod, P., &Dienes, Z. (1992b). Motion coherence and conjunction search: Implications for guided search theory.Perception & Psychophysics,51, 79–85.Google Scholar
  54. Duncan, J. (1980). The locus of interference in the perception of simultaneous stimuli.Psychological Review,87, 272–300.PubMedGoogle Scholar
  55. Duncan, J. (1989). Boundary conditions on parallel processing in human vision.Perception,18, 457–469.PubMedGoogle Scholar
  56. Duncan, J., &Humphreys, G. W. (1989). Visual search and stimulus similarity.Psychological Review,96, 433–458.PubMedGoogle Scholar
  57. Duncan, J., &Humphreys, G. W. (1992). Beyond the search surface: Visual search and attentional engagement.Journal of Experimental Psychology: Human Perception & Performance,18, 578–588.Google Scholar
  58. D’Zmura, M. (1991). Color in visual search.Vision Research,31, 951–966.PubMedGoogle Scholar
  59. Efron, R., Yund, E. W., &Nichols, D. R. (1987). Scanning the visual field without eye movements: A sex difference.Neuropsychologia,25, 637–644.PubMedGoogle Scholar
  60. Egeth, H. E., Jonides, J., &Wall, S. (1972). Parallel processing of multielement displays.Cognitive Psychology,3, 674–698.Google Scholar
  61. Egeth, H. E., Virzi, R. A., &Garbart, H. (1984). Searching for conjunctively defined targets.Journal of Experimental Psychology: Human Perception & Performance,10, 32–39.Google Scholar
  62. Elder, J., &Zucker, S. (1993). The effect of contour closure on the rapid discrimination of two-dimensional shapes.Vision Research,33, 981–991.PubMedGoogle Scholar
  63. Enns, J. T. (1992). Sensitivity of early human vision to 3-D orientation in line-drawings.Canadian Journal of Psychology,46, 143–169.PubMedGoogle Scholar
  64. Enns, J. T., &Rensink, R. A. (1990a). Scene based properties influence visual search.Science,247, 721–723.PubMedGoogle Scholar
  65. Enns, J. T., &Rensink, R. A. (1990b). Sensitivity to three-dimensional orientation in visual search.Psychological Science,1, 323–326.Google Scholar
  66. Enns, J. T., &Rensink, R. A. (1991). Preattentive recovery of three-dimensional orientation from line drawings.Psychological Review,98, 335–351.PubMedGoogle Scholar
  67. Enns, J. T., &Rensink, R. A. (1992). An object completion process in early vision.Investigative Ophthalmology & Visual Science,33, 1263. (Abstract)Google Scholar
  68. Epstein, W., &Babler, T. (1990). In search of depth.Perception & Psychophysics,48, 68–76.Google Scholar
  69. Eriksen, B. A., &Eriksen, C. W. (1974). Effects of noise letters upon the identification of a target letter in a nonsearch task.Perception & Psychophysics,16, 143–149.Google Scholar
  70. Fahle, M. (1990). Parallel, semi-parallel, and serial processing of visual hyperacuity.Human Vision & Electronic Imaging: Models, Methods, & Applications,1249, 147–159.Google Scholar
  71. Fahle, M. (1991a). A new elementary feature of vision.Investigative Ophthalmology & Visual Science,32, 2151–2155.Google Scholar
  72. Fahle, M. (1991b). Parallel perception of vernier offsets, curvature, and chevrons in humans.Vision Research,31, 2149–2184.PubMedGoogle Scholar
  73. Fang, S.-P., &Wu, P. (1989). Illusory conjunctions in the perception of Chinese characters.Journal of Experimental Psychology: Human Perception & Performance,15, 434–447.Google Scholar
  74. Farah, M. (1992). Is an object an object an object? Cognitive and neuropsychological investigations of domain specificity in visual object recognition.Current Directions in Psychological Science,1, 165–169.Google Scholar
  75. Farmer, E. W., &Taylor, R. M. (1980). Visual search through color displays: Effects of target-background similarity and background uniformity.Perception & Psychophysics,27, 267–272.Google Scholar
  76. Folk, C. L., Remington, R. W., &Johnston, J. C. (1992). Involuntary covert orienting is contingent on attentional control settings.Journal of Experimental Psychology: Human Perception & Performance,18, 1030–1044.Google Scholar
  77. Foster, D. H., &Ward, P. A. (1991a). Asymmetries in oriented-line detection indicate two orthogonal filters in early vision.Proceedings of the Royal Society London: Series B,243, 75–81.Google Scholar
  78. Foster, D. H., &Ward, P. A. (1991b). Horizontal-vertical filters in early vision predict anomalous line-orientation frequencies.Proceedings of the Royal Society London: Series B,243, 83–86.Google Scholar
  79. Francolini, C. M., &Egeth, H. E. (1979). Perceptual selectivity is task dependent: The pop-out effect poops out.Perception & Psychophysics,25, 99–110.Google Scholar
  80. Friedman-Hill, S. R., &Wolfe, J. M. (1992). Activation vs. inhibition in visual search.Investigative Ophthalmology & Visual Science,33, 1356. (Abstract)Google Scholar
  81. Friedman-Hill, S. R., &Wolfe, J. M. (in press). Second-order parallel processing: Visual search for the odd item in a subset.Journal of Experimental Psychology: Human Perception & Performance.Google Scholar
  82. Geisler, W. S. (1989). Sequential ideal-observer analysis of visual discriminations.Psychological Review,96, 267–314.PubMedGoogle Scholar
  83. Grabowecky, M., &Khurana, B. (1990). Features were meant to be integrated.Investigative Ophthalmology & Visual Science,31, 105. (Abstract)Google Scholar
  84. Graham, N., Beck, J., &Sutter, A. (1992). Nonlinear processes in spatial-frequency channel models of perceived texture segregation: Effects of sign and amount of contrast.Vision Research,32, 719–743.PubMedGoogle Scholar
  85. Graham, N., Sutter, A., Venkatesan, C., &Humaran, M. (1992). Non-linear processes in perceived region segregation: Orientation selectivity of complex channels.Ophthalmic & Physiological Optics,12, 142–146.Google Scholar
  86. Graves, M. A., Ball, K. K., Cissell, G. M., West, R. E., Whorley, K. D., &Edwards, J. D. (1993). Auditory distraction results in functional visual impairment for some older drivers.Investigative Ophthalmology & Visual Science,34, 1418. (Abstract)Google Scholar
  87. Green, B. F., &Anderson, L. K. (1956). Color coding in a visual search task.Journal of Experimental Psychology,51, 19–24.PubMedGoogle Scholar
  88. Gurnsey, R., &Browse, R. A. (1989). Asymmetries in visual texture discrimination.Spatial Vision,4, 31–44.PubMedGoogle Scholar
  89. Gurnsey, R., Humphrey, G. K., &Kapitan, P. (1992). Parallel discrimination of subjective contours defined by offset gratings.Perception & Psychophysics,52, 263–276.Google Scholar
  90. Haenny, P. E., Maunsell, J. H. R., &Schiller, P. H. (1988). State dependent activity in monkey visual cortex: II. Visual and non-visual factors.Experimental Brain Research,69, 245–259.Google Scholar
  91. Haenny, P. E., &Schiller, P. H. (1988). State dependent activity in monkey visual cortex: I. Single cell activity in V1 and V4 on visual tasks.Experimental Brain Research,69, 225–244.Google Scholar
  92. Heathcote, A., &Mewhort, D. J. K. (1993). Representation and selection of relative position.Journal of Experimental Psychology: Human Perception & Performance,19, 488–516.Google Scholar
  93. Helmholtz, H. von (1962).Treatise on physiological optics (Vol. 3; J. P. C. Southall, Trans.). New York: Dover. (Original work published 1866)Google Scholar
  94. Hoffman, J. E. (1978). Search through a sequentially presented visual display.Perception & Psychophysics,23, 1–11.Google Scholar
  95. Hoffman, J. E. (1979). A two-stage model of visual search.Perception & Psychophysics,25, 319–327.Google Scholar
  96. Holliday, I. E., &Braddick, O. J. (1991). Pre-attentive detection of a target defined by stereoscopic slant.Perception,20, 355–362.PubMedGoogle Scholar
  97. Hubel, D. H., &Livingstone, M. S. (1987). Segregation of form, color, and stereopsis in primate area 18.Journal of Neuroscience,7, 3378–3415.PubMedGoogle Scholar
  98. Hummel, J. E., &Biederman, I. (1992). Dynamic binding in a neural network for shape recognition.Psychological Review,99, 480–517.PubMedGoogle Scholar
  99. Humphreys, G. W., &Müller, H. (1993). Search via recursive rejection (SERR): A connectionist model of visual search.Cognitive Psychology,25, 43–110.Google Scholar
  100. Humphreys, G. W., Quinlan, P. T., &Riddoch, M. J. (1989). Grouping processes in visual search: Effects with single and combined-feature targets.Journal of Experimental Psychology: General,118, 258–279.Google Scholar
  101. Intraub, H. (1985). Visual dissociation: An illusory conjunction of pictures and forms.Journal of Experimental Psychology: Human Perception & Performance,11, 431–442.Google Scholar
  102. Ivry, R. B., &Cohen, A. (1990). Dissociation of short- and long-range apparent motion in visual search.Journal of Experimental Psychology: Human Perception & Performance,16, 317–331.Google Scholar
  103. Johnston, W. A., Hawley, K. J., &Farnham, J. M. (1993). Novel popout: Empirical boundaries and tentative theory.Journal of Experimental Psychology: Human Perception & Performance,19, 140–153.Google Scholar
  104. Jonides, J., &Gleitman, H. (1972). A conceptual category effect in visual search: O as letter or digit.Perception & Psychophysics,12, 457–460.Google Scholar
  105. Jonides, J., &Yantis, S. (1988). Uniqueness of abrupt visual onset in capturing attention.Perception & Psychophysics,43, 346–354.Google Scholar
  106. Julesz, B. (1984). A brief outline of the texton theory of human vision.Trends in Neuroscience,7, 41–45.Google Scholar
  107. Julesz, B. (1986). Texton gradients: The texton theory revisited.Biological Cybernetics,54, 245–251.PubMedGoogle Scholar
  108. Julesz, B., &Bergen, J. R. (1983). Textons, the fundamental elements in preattentive vision and perceptions of textures.Bell Systems Technical Journal,62, 1619–1646.Google Scholar
  109. Julesz, B., &Kröse, B. (1988). Features and spatial filters.Nature,333, 302–303.PubMedGoogle Scholar
  110. Kahneman, D., &Treisman, A. (1984). Changing views of attention and automaticity. In R. Parasuraman & D. R. Davies (Eds.),Varieties of attention (pp. 29–61). Orlando, FL: Academic Press.Google Scholar
  111. Kanwisher, N. (1991). Repetition blindness and illusory conjunctions: Errors in binding visual types with visual tokens.Journal of Experimental Psychology: Human Perception & Performance,16, 30–47.Google Scholar
  112. Kanwisher, N., &Driver, J. (1992). Objects, attributes, and visual attention: Which, what, and where.Current Directions in Psychological Science,1, 26–31.Google Scholar
  113. Kanwisher, N., &Potter, M. C. (1989). Repetition blindness: The effects of stimulus modality and spatial displacement.Memory & Cognition,17, 117–124.Google Scholar
  114. Kanwisher, N., &Potter, M. C. (1990). Repetition blindness: Levels of processing.Journal of Experimental Psychology: Human Perception & Performance,16, 30–47.Google Scholar
  115. Karni, A., &Sagi, D. (1990). Texture discrimination learning is specific for spatial location and background element orientation.Investigative Ophthalmology & Visual Science,31, 562. (Abstract)Google Scholar
  116. Karni, A., &Sagi, D. (1992). Later but (almost) forever-The time course of learning of a visual skill.Investigative Ophthalmology & Visual Science,33, 1356. (Abstract)Google Scholar
  117. Keeble, D. R., &Morgan, M. J. (1993). A linear systems approach to texture perception.Investigative Ophthalmology & Visual Science,34, 1237. (Abstract)Google Scholar
  118. Kelly, P. L., Harrison, D. W., &Hodge, M. H. (1991). The category effect in visual selective attention.Bulletin of the Psychonomic Society,29, 71–74.Google Scholar
  119. Kinchla, R. A. (1977). The role of structural redundancy in the perception of visual targets.Perception & Psychophysics,22, 19–30.Google Scholar
  120. Kinchla, R. A. (1992). Attention.Annual Review of Psychology,43, 711–742.PubMedGoogle Scholar
  121. Kinchla, R. A., &Wolfe, J. M. (1979). The order of visual processing: “Top-down,” “bottom-up,” or “middle-out.”Perception & Psychophysics,25, 225–231.Google Scholar
  122. Klein, R. (1988). Inhibitory tagging system facilitates visual search.Nature,334, 430–431.PubMedGoogle Scholar
  123. Knierim, J. J., &Van Essen, D. C. (1992). Neuronal responses to static texture patterns in area V1 of the alert monkey.Journal of Neurophysiology,67, 961–980.PubMedGoogle Scholar
  124. Kröse, B. A. J., &Julesz, B. (1989). The control and speed of shifts of attention.Vision Research,29, 1607–1619.PubMedGoogle Scholar
  125. Kwak, H.-W., Dagenbach, D., &Egeth, H. [E.] (1991). Further evidence for a time-independent shift of the focus of attention.Perception & Psychophysics,49, 473–480.Google Scholar
  126. Landy, M. S., &Bergen, J. R. (1991). Texture segregation and orientation gradient.Vision Research,31, 679–691.PubMedGoogle Scholar
  127. Lennie, P., Trevarthen, C., Van Essen, D., &Wassle, H. (1990). Parallel processing of visual information. In L. Spillman & J. S. Werner (Eds.),Visual perception: The neurophysiological foundations (pp. 103–128). San Diego, CA: Academic Press.Google Scholar
  128. Logothetis, N. K., &Charles, E. R. (1990). V4 responses to gratings defined by random dot motion.Investigative Ophthalmology & Visual Science,31, 90. (Abstract)Google Scholar
  129. Luschow, A., &Nothdurft, H. C. (1993). Pop-out of orientation but not pop-out of motion at isoluminance.Vision Research,33, 91–104.PubMedGoogle Scholar
  130. Mach, E. (1959).The analysis of sensations (C. M. Williams, Trans.). New York: Dover. (Original work published 1886)Google Scholar
  131. Mackeben, M., &Nakayama, K. (1988). Fixation release facilitates rapid attentional shifts.Investigative Ophthalmology & Visual Science,29, 22. (Abstract)Google Scholar
  132. Malik, J., &Perona, P. (1990). Preattentive texture discrimination with early vision mechanisms.Journal of the Optical Society of America A,7, 923–932.Google Scholar
  133. Maijkovic, V., &Nakayama, K. (1992). Color and position priming in the deployment of attention.Investigative Ophthalmology & Visual Science,33, 1354. (Abstract)Google Scholar
  134. Marendaz, C., Stivalet, P., Barraclough, L., &Walkowiac, P. (1993). Effect of gravitoinertial cues on visual search for orientation.Journal of Experimental Psychology: Human Perception & Performance,19, 1266–1277.Google Scholar
  135. Maunsell, J. H. R., Sclar, G., &Nealey, T. A. (1988). Task-specific signals in area V4 of monkey visual cortex.Society for Neuroscience Abstracts,14, 10.Google Scholar
  136. McLeod, P., Driver, J., &Crisp, J. (1988). Visual search for conjunctions of movement and form is parallel.Nature,332, 154–155.PubMedGoogle Scholar
  137. McLeod, P., Driver, J., Dienes, Z., &Crisp, J. (1991). Filtering by movement in visual search.Journal of Experimental Psychology: Human Perception & Performance,17, 55–64.Google Scholar
  138. Moraglia, G. (1989). Display organization and the detection of horizontal line segments.Perception & Psychophysics,45, 265–272.Google Scholar
  139. Moran, J., &Desimone, R. (1985). Selective attention gates visual processing in the extrastriate cortex.Science,229, 782–784.PubMedGoogle Scholar
  140. Mordkoff, J. T., &Yantis, S. (1993). Dividing attention between color and shape: Evidence of coactivation.Perception & Psychophysics,53, 357–366.Google Scholar
  141. Moser, M. C. (1991).The perception of multiple objects. Cambridge, MA: MIT Press, Bradford Books.Google Scholar
  142. Nagy, A. L., &Sanchez, R. R. (1990). Critical color differences determined with a visual search task.Journal of the Optical Society of America A,7, 1209–1217.Google Scholar
  143. Nagy, A. L., Sanchez, R. R., &Hughes, T. C. (1990). Visual search for color differences with foveal and peripheral vision.Journal of the Optical Society of America A,7, 1995–2001.Google Scholar
  144. Nakayama, K. (1990). The iconic bottleneck and the tenuous link between early visual processing and perception. In C. Blakemore (Ed.),Vision: Coding and efficiency (pp. 411–422). Cambridge: Cambridge University Press.Google Scholar
  145. Nakayama, K., &Silverman, G. H. (1986). Serial and parallel processing of visual feature conjunctions.Nature,320, 264–265.PubMedGoogle Scholar
  146. Navon, D. (1977). Forest before trees: The precedence of global features in visual perception.Cognitive Psychology,9, 353–383.Google Scholar
  147. Neisser, U. (1967).Cognitive psychology. New York: Appleton, Century, Crofts.Google Scholar
  148. Nothdurft, H. C. (1990). Texture discrimination by cells in the cat lateral geniculate nucleus.Experimental Brain Research,82, 48–66.Google Scholar
  149. Nothdurft, H. C. (1991a). Different effects from spatial frequency masking in texture segregation and texton detection tasks.Vision Research,31, 299–320.PubMedGoogle Scholar
  150. Nothdurft, H. C. (1991b). Texture segmentation and pop-out from orientation contrast.Vision Research,31, 1073–1078.PubMedGoogle Scholar
  151. Nothdurft, H. C. (1993a). Matching luminance pop-out with that of orientation or motion.Investigative Ophthalmology A Visual Science,34, 1054. (Abstract)Google Scholar
  152. Nothdurft, H. C. (1993b). The role of features in preattentive vision: Comparison of orientation, motion and color cues.Vision Research,33, 1937–1958.PubMedGoogle Scholar
  153. Nothdurft, H. C., &Li, C. Y. (1984). Representation of spatial details in textured patterns by cells of the cat striate cortex.Experimental Brain Research,57, 9–21.Google Scholar
  154. O’Connell, K. M., &Treisman, A. (1992).Shared orientation coding for lines, dot pairs, and edges. Manuscript submitted for publication.Google Scholar
  155. O’Neill, P., Wolfe, J. M., &Bilsky, A. B. (1993). Individual differences in visual search.Investigative Ophthalmology A Visual Science,34, 1236. (Abstract)Google Scholar
  156. O’Toole, A. J., &Walker, C. L. (1993). Disparity as a visual primitive: The competing role of surface percepts.Investigative Ophthalmology A Visual Science,34, 1187. (Abstract)Google Scholar
  157. Pashler, H. (1987). Detecting conjunctions of color and form: Reassessing the serial search hypothesis.Perception A Psychophysics,41, 191–201.Google Scholar
  158. Pashler, H. (1988). Cross-dimensional interaction and texture segregation.Perception & Psychophysics,43, 307–318.Google Scholar
  159. Pavel, M., Econopouly, J., &Landy, M. S. (1992). The psychophysics of rapid visual search.Investigative Ophthalmology A Visual Science,33, 1355. (Abstract)Google Scholar
  160. Peterhans, E., Von der Heydt, R., &Baumgartner, G. (1986). Neuronal responses to illusory contour stimuli reveal stages of visual cortical processing. In J. D. Pettigrew, K. J. Sanderson, & W. R. Levick (Eds.),Visual neuroscience (pp. 343–351). Cambridge: Cambridge University Press.Google Scholar
  161. Poisson, M. E., &Wilkinson, F. (1992). Distractor ratio and grouping processes in visual conjunction search.Perception,21, 21–38.PubMedGoogle Scholar
  162. Pomerantz, J. R., &Pristach, E. A. (1989). Emergent features, attention, and perceptual glue in visual form perception.Journal of Experimental Psychology: Human Perception A Performance,15, 635–649.Google Scholar
  163. Posner, M. I., &Cohen, Y. (1984). Components of attention. In H. Bouma & D. G. Bowhuis (Eds.),Attention and performance X (pp. 55–66). Hillsdale, NJ: Erlbaum.Google Scholar
  164. Prinzmetal, W., &Keysar, B. (1989). Functional theory of illusory conjunctions and neon colors.Journal of Experimental Psychology: General,118, 165–190.Google Scholar
  165. Quinlan, P. T., &Humphreys, G. W. (1987). Visual search for targets defined by combinations of color, shape, and size: An examination of the task constraints on feature and conjunction searches.Perception & Psychophysics,41, 455–472.Google Scholar
  166. Rafal, R. D., Calabresi, P. A., Brennan, C. W., &Sciolto, T. K. (1989). Saccade preparation to recently attended locations.Journal of Experimental Psychology: Human Perception A Performance,15, 673–685.Google Scholar
  167. Ramachandran, V. S. (1988). Perception of shape from shading.Nature,331, 163–165.PubMedGoogle Scholar
  168. Ratcliff, R. (1978). A theory of memory retrieval.Psychological Review,85, 59–108.Google Scholar
  169. Rensink, R., &Cavanagh, P. (1993). Processing of shadows at preattentive levels.Investigative Ophthalmology A Visual Science,34, 1288. (Abstract)Google Scholar
  170. Robertson, L. C., Egly, R., Lamb, M. R., &Kerth, L. (1993). Spatial attention and cuing to global and local levels of hierarchical structure.Journal of Experimental Psychology: Human Perception A Performance,19, 471–487.Google Scholar
  171. Robertson, L. C., &Lamb, M. R. (1991). Neuropsychological contributions to theories of part/whole organization.Cognitive Psychology,23, 299–330.PubMedGoogle Scholar
  172. Rock, I. (1974, January). The perception of disoriented figures.Scientific American, pp. 78–85.Google Scholar
  173. Ross, W. D., Grossberg, S., &Mingolla, E. (1993). A neural model of visual search.Investigative Ophthalmology A Visual Science,34, 1235. (Abstract)Google Scholar
  174. Rubenstein, B. S., &Sagi, D. (1990). Spatial variability as a limiting factor in texture discrimination tasks: Implications for performance asymmetries.Journal of the Optical Society of America A,7, 1632–1643.Google Scholar
  175. Rubin, J. M., &Kanwisher, N. (1985). Topological perception: Holes in an experiment.Perception A Psychophysics,37, 179–180.Google Scholar
  176. Sagi, D. (1988). The combination of spatial frequency and orientation is effortlessly perceived.Perception A Psychophysics,43, 601–603.Google Scholar
  177. Sagi, D. (1990). Detection of an orientation singularity in Gabor textures: Effect of signal density and spatial-frequency.Vision Research,30, 1377–1388.PubMedGoogle Scholar
  178. Sagi, D., &Julesz, B. (1985a). Fast noninertial shifts of attention.Spatial Vision,1, 141–149.PubMedGoogle Scholar
  179. Sagi, D., &Julesz, B. (1985b). “Where” and “what” in vision.Science,228, 1217–1219.PubMedGoogle Scholar
  180. Sandon, P. A., &Yanikoglu, B. A. (1990). Visual search as constraint propagation. InProceedings of the 12th Annual Conference of the Cognitive Science Society (pp. 574–581). Hillsdale, NJ: Erlbaum.Google Scholar
  181. Schneider, W., &Shiffrin, R. M. (1977). Controlled and automatic human information processing: I. Detection, search, and attention.Psychological Review,84, 1–66.Google Scholar
  182. Sekuler, R., &Ball, K. K. (1986). Visual localization: Age and practice.Journal of the Optical Society of America A,3, 864–868.Google Scholar
  183. Smallman, H. S., &Boynton, R. M. (1990). Segregation of basic color in an information display.Journal of the Optical Society of America A,7, 1985–1994.Google Scholar
  184. Smith, S. L. (1962). Color coding and visual search.Journal of Experimental Psychology,64, 434–440.PubMedGoogle Scholar
  185. Spitzer, H., Desimone, R., &Moran, J. (1988). Increased attention enhances both behavioral and neuronal performance.Science,240, 338–340.PubMedGoogle Scholar
  186. Sternberg, S. (1969). High-speed scanning in human memory.Science,153, 652–654.Google Scholar
  187. Stone, W., &Mack, A. (1993). Perception of grouping based on motion without attention.Investigative Ophthalmology A Visual Science,34, 1233. (Abstract)Google Scholar
  188. Tadmor, Y., &Tolhurst, D. J. (1993). Both the phase and the amplitude spectrum may determine the appearance of natural images.Vision Research,33, 141–145.PubMedGoogle Scholar
  189. Taylor, S., &Badcock, D. (1988). Processing feature density in preat-tentive perception.Perception A Psychophysics,44, 551–562.Google Scholar
  190. Theeuwes, J. (1991). Cross-dimensional perceptual selectivity.Perception A Psychophysics,50, 184–193.Google Scholar
  191. Theeuwes, J. (1992). Perceptual selectivity for color and form.Perception & Psychophysics,51, 599–606.Google Scholar
  192. Thomas, J. P., &Gille, J. (1979). Bandwidths of orientation channels in human vision.Journal of the Optical Society of America,69, 652–660.PubMedGoogle Scholar
  193. Tipper, S. P., &Bayus, S. C. (1987). Individual difference in selective attention: The relation of priming and interference to cognitive failure.Personality A Individual Differences,8, 667–675.Google Scholar
  194. Tipper, S. P., Brehaut, J. C., &Driver, J. (1990). Selection of moving and static objects for the control of spatially directed attention.Journal of Experimental Psychology: Human Perception & Performance,16, 492–504.Google Scholar
  195. Tipper, S. P., Driver, J., &Weaver, B. (1991). Object centered inhibition of return of visual attention.Quarterly Journal of Experimental Psychology,43A, 289–298.Google Scholar
  196. Townsend, J. T. (1971). A note on the identifiability of parallel and serial processes.Perception A Psychophysics,10, 161–163.Google Scholar
  197. Townsend, J. T. (1976). Serial and within-stage independent parallel model equivalence on the minimum completion time.Journal of Mathematical Psychology,14, 219–239.Google Scholar
  198. Townsend, J. T. (1990). Serial and parallel processing: Sometimes they look like Tweedledum and Tweedledee but they can (and should) be distinguished.Psychological Science,1, 46–54.Google Scholar
  199. Treisman, A. (1985). Preattentive processing in vision.Computer Vision, Graphics, & Image Processing,31, 156–177.Google Scholar
  200. Treisman, A. (1986a, May). Features and objects in visual processing.Scientific American, pp. 114B–125.Google Scholar
  201. Treisman, A. (1986b). Properties, parts, and objects. In K. R. Boff, L. Kaufmann, & J. P. Thomas (Eds.),Handbook of human perception and performance (pp. 35.1–35.70). New York: Wiley.Google Scholar
  202. Treisman, A. (1988). Features and objects: The 14th Bartlett Memorial Lecture.Quarterly Journal of Experimental Psychology,40A, 201–237.Google Scholar
  203. Treisman, A., &Gelade, G. (1980). A feature-integration theory of attention.Cognitive Psychology,12, 97–136.PubMedGoogle Scholar
  204. Treisman, A., &Gormican, S. (1988). Feature analysis in early vision: Evidence from search asymmetries.Psychological Review,95, 15–48.PubMedGoogle Scholar
  205. Treisman, A., &Sato, S. (1990). Conjunction search revisited.Journal of Experimental Psychology: Human Perception & Performance,16, 459–478.Google Scholar
  206. Treisman, A., &Schmidt, H. (1982). Illusory conjunctions in the perception of objects.Cognitive Psychology,14, 107–141.PubMedGoogle Scholar
  207. Treisman, A., &Souther, J. (1986). Illusory words: The roles of attention and of top-down constraints in conjoining letters to form words.Journal of Experimental Psychology: Human Perception & Performance,12, 3–17.Google Scholar
  208. Treisman, A., Vieira, A., &Hayes, A. (1992). Automaticity and preattentive processing.American Journal of Psychology,105, 341–362.PubMedGoogle Scholar
  209. Tsotsos, J. K. (1990). Analyzing vision at the complexity level.Behavioral & Brain Sciences,13, 423–469.Google Scholar
  210. Van Essen, D. C., &Maunsell, J. H. R. (1983). Hierarchical organization and functional streams in the visual cortex.Trends in Neuroscience,6, 370–375.Google Scholar
  211. Vieira, A., &Treisman, A. (1988, November).Automatic search: Changing perceptions or procedures? Paper presented at the meeting of the Psychonomic Society, Chicago.Google Scholar
  212. Virzi, R. A., &Egeth, H. E. (1984). Is meaning implicated in illusory contours?Journal of Experimental Psychology: Human Perception & Performance,10, 573–580.Google Scholar
  213. Von der Heydt, R., &Dursteler, M. R. (1993). Visual search: Monkeys detect conjunctions as fast as features.Investigative Ophthalmology & Visual Science,34, 1288. (Abstract)Google Scholar
  214. Von der Heydt, R., Peterhans, E., &Baumgartner, G. (1984). Illusory contours and cortical neuron responses.Science,224, 1260–1262.PubMedGoogle Scholar
  215. Voorhees, H., &Poggio, T. (1988). Computing texture boundaries from images.Nature,333, 364–367.PubMedGoogle Scholar
  216. Wang, Q., &Cavanagh, P. (1993). Acquired familiarity effects in visual search with Chinese characters.Investigative Ophthalmology & Visual Science,34, 1236. (Abstract)Google Scholar
  217. Wang, Q., Cavanagh, P., &Green, M. (1992). Familiarity and pop-out in visual search.Investigative Ophthalmology & Visual Science,33, 1262. (Abstract)Google Scholar
  218. Ward, R., &McClelland, J. L. (1989). Conjunctive search for one and two identical targets.Journal of Experimental Psychology: Human Perception & Performance,15, 664–672.Google Scholar
  219. White, J. M., Levi, D. M., &Aitsebaomo, A. P. (1992). Spatial localization without visual references.Vision Research,32, 513–526.PubMedGoogle Scholar
  220. Wilson, H. R. (1986). Responses of spatial mechanisms can explain hyperacuity.Vision Research,26, 453–469.PubMedGoogle Scholar
  221. Wilson, H. R., Levi, D., Maffei, L., Rovamo, J., &De Valois, R. (1990). The perception of form: Retina to striate cortex. In L. Spillman & J. S. Werner (Eds.),Visual perception: The neurophysiological foundations (pp. 231–272). San Diego, CA: Academic Press.Google Scholar
  222. Wolfe, J. M. (1986). Stereopsis and binocular rivalry.Psychological Review,93, 269–282.PubMedGoogle Scholar
  223. Wolfe, J. M. (1992). “Effortless” texture segmentation and “parallel” visual search are nor the same thing.Vision Research,32, 757–763.PubMedGoogle Scholar
  224. Wolfe, J. M. (1994). Visual search in continuous, naturalistic stimuli.Vision Research,34, 1187–1195.PubMedGoogle Scholar
  225. Wolfe, J. M., &Bose, M. (1991).Visual search for the “medium” stimulus. Unpublished research report. Cambridge, MA: Massachusetts Institute of Technology.Google Scholar
  226. Wolfe, J. M., &Cave, K. R. (1989). Deploying visual attention: The guided search model. In T. Troscianko & A. Blake (Eds.),AI and the eye (pp. 79–103). Chichester, U.K.: Wiley.Google Scholar
  227. Wolfe, J. M., Cave, K. R., &Franzel, S. L. (1989). Guided search: An alternative to the feature integration model for visual search.Journal of Experimental Psychology: Human Perception & Performance,15, 419–433.Google Scholar
  228. Wolfe, J. M., Chun, M. M., &Friedman-Hill, S. R. (1993). Making use of texton gradients: Visual search and texton grouping exploit the same parallel processes in different ways.Spatial Vision,7, 90.Google Scholar
  229. Wolfe, J. M.,Chun, M. M., &Friedman-Hill, S. R. (in press). Making use of texton gradients: Visual search and perceptual grouping exploit the same parallel processes in different ways. In T. Papathomas & A. Gorea (Eds.),Unking psychophysics, neurophysiology, and computational vision: A volume in honor of Beta Julesz.Google Scholar
  230. Wolfe, J. M., &Franzel, S. L. (1988). Binocularity and visual search.Perception & Psychophysics,44, 81–93.Google Scholar
  231. Wolfe, J. M., &Friedman-Hill, S. R. (1990, November).Must we attend to every abrupt onset? Paper presented at the meeting of the Psychonomic Society, New Orleans.Google Scholar
  232. Wolfe, J. M., &Friedman-Hill, S. R. (1992a). On the role of symmetry in visual search.Psychological Science,3, 194–198.Google Scholar
  233. Wolfe, J. M., &Friedman-Hill, S. R. (1992b). Visual search for orientation: The role of angular relations between targets and distrac-tors.Spatial Vision,6, 199–208.PubMedGoogle Scholar
  234. Wolfe, J. M., Friedman-Hill, S. R., &Bilsky, A. B. (1994). Parallel processing of part-whole information in visual search tasks.Perception & Psychophysics,55, 537–550.Google Scholar
  235. Wolfe, J. M., Friedman-Hill, S. R., Stewart, M. I., &O’Con-nell, K. M. (1992). The role of categorization in visual search for orientation.Journal of Experimental Psychology: Human Perception & Performance,18, 34–49.Google Scholar
  236. Wolfe, J. M., &Pokorny, C. W. (1990). Inhibitory tagging in visual search: A failure to replicate.Perception & Psychophysics,48, 357–362.Google Scholar
  237. Wolfe, J. M., Yee, A., &Friedman-Hill, S. R. (1992). Curvature is a basic feature for visual search.Perception,21, 465–480.PubMedGoogle Scholar
  238. Wolfe, J. M.,Yu, K. P.,Pruszenski, A. D., &Cave, K. R. (1988, November).A preattentive feature process can execute only one command at a time. Paper presented at the meeting of the Psychonomic Society, Chicago.Google Scholar
  239. Wolfe, J. M., Yu, K. P., Stewart, M. I., Shorter, A. D., Friedman-Hill, S. R., &Cave, K. R. (1990). Limitations on the parallel guidance of visual search: Color X color and orientation x orientation conjunctions.Journal of Experimental Psychology: Human Perception & Performance,16, 879–892.Google Scholar
  240. Yantis, S. (1993). Stimulus-driven attentional capture.Current Directions in Psychological Science,2, 156–161.Google Scholar
  241. Yantis, S., &Johnson, D. N. (1990). Mechanisms of attentional priority.Journal of Experimental Psychology: Human Perception & Performance,16, 812–825.Google Scholar
  242. Yantis, S., &Jones, E. (1991). Mechanisms of attentional selection: Temporally modulated priority tags.Perception & Psychophysics,50, 166–178.Google Scholar
  243. Yantis, S., &Jonides, J. (1990). Abrupt visual onsets and selective attention: Voluntary versus automatic allocation.Journal of Experimental Psychology: Human Perception & Performance,16, 121–134.Google Scholar
  244. Yund, E. W., Efron, R., &Nichols, D. R. (1990). Detectability gradients as a function of target location.Brain & Cognition,12, 1–16.Google Scholar
  245. Zeki, S. M. (1978). Uniformity and diversity of structure and function in Rhesus monkey prestriate visual cortex.Journal of Physiology,277, 273–290.PubMedGoogle Scholar
  246. Zeki, S. M., Watson, J. D. G., Lueck, C. J., Friston, K. J., Ken-nard, C., &Frackowiak, R. S. J. (1991). A direct demonstration of functional specialization in human visual cortex.Journal of Neuroscience,11, 641–649.PubMedGoogle Scholar
  247. Zhou, W., Chen, L., &Zhang, X. (1992). Topological perception: Holes in illusory conjunction and visual search.Investigative Ophthalmology & Visual Science,33, 958. (Abstract)Google Scholar
  248. Zhou, W., Zhang, X., &Chen, L. (1993). Shape transformation in illusory conjunctions.Investigative Ophthalmology & Visual Science,34, 1082. (Abstract)Google Scholar
  249. Zohary, E., &Hochstein, S. (1989). How serial is serial processing in vision?Perception,18, 191–200.PubMedGoogle Scholar

Copyright information

© Psychonomic Society, Inc. 1994

Authors and Affiliations

  1. 1.Harvard Medical SchoolBoston
  2. 2.Brigham & Women’s HospitalBoston

Personalised recommendations