Psychonomic Bulletin & Review

, Volume 12, Issue 5, pp 822–851 | Cite as

Representational momentum and related displacements in spatial memory: A review of the findings

Theoretical and Review Articles


Memory for the final location of a moving target is often displaced in the direction of target motion, and this has been referred to asrepresentational momentum. Characteristics of the target (e.g., velocity, size, direction, and identity), display (e.g., target format, retention interval, and response method), context (landmarks, expectations, and attribution of motion source), and observer (e.g., allocation of attention, eye movements, and psychopathology) that influence the direction and magnitude of displacement are reviewed. Specific conclusions regarding numerous variables that influence displacement (e.g., presence of landmarks or surrounding context), as well as broad-based conclusions regarding displacement in general (e.g., displacement does not reflect objective physical principles, may reflect aspects of naive physics, does not solely reflect eye movements, may involve some modular processing, and reflects high-level processes) are drawn. A possible computational theory of displacement is suggested in which displacement (1) helps bridge the gap between perception and action and (2) plays a critical part in localizing stimuli in the environment.


  1. Actis-Grosso, R., &Stucchi, N. (2003). Shifting the start: Backward mislocation of the initial position of a motion.Journal of Experimental Psychology: Human Perception & Performance,29, 675–691.Google Scholar
  2. Actis-Grosso, R., Stucchi, N., &Vicario, G. B. (1996). On the length of trajectories for moving dots. In S. C. Masin (Ed.),chner Day 1996: Proceedings of the 12th Annual Meeting of the International Society for Psychophysics(pp. 185–190). Padua, Italy: International Society for Psychophysics.Google Scholar
  3. Amorim, M. A., Lang, W., Lindinger, G., Mayer, D., Deecke, L., &Berthoz, A. (2000). Modulation of spatial orientation by mental imagery instructions: A MEG study of representational momentum.Journal of Cognitive Neuroscience,12, 569–582.PubMedGoogle Scholar
  4. Ashida, H. (2004). Action-specific extrapolation of target motion in human visual system.Neuropsychologia,42, 1515–1524.PubMedGoogle Scholar
  5. Berry, M. J., Jr.,Brivanlou, I. H., Jordan, T. A., &Meister, M. (1999). Anticipation of moving stimuli by the retina.Nature,8 334–338.Google Scholar
  6. Bertamini, M.(1993). Memory for position and dynamic representations.Memory & Cognition,21, 449–457.Google Scholar
  7. Brass, M., Bekkering, H., Wohlschläger, A., &Prinz, W. (2000). Compatibility between observed and executed finger movements: Comparing symbolic, spatial, and imitative cues.Brain & Cognition,44, 124–143.Google Scholar
  8. Brehaut, J. C., &Tipper, S. P. (1996). Representational momentum and memory for luminance.Journal of Experimental Psychology: Human Perception & Performance,22, 480–501.Google Scholar
  9. Brouwer, A. M., Franz, V. H., &Thornton, I. M. (2004). Representational momentum in perception and grasping: Translating versus transforming objects.Journal of Vision,4, 575–584.PubMedGoogle Scholar
  10. Bryant, D. J., &Subbiah, I. (1994). Subjective landmarks in perception and memory for spatial location.Canadian Journal of Experimental Psychology,48, 119–139.PubMedGoogle Scholar
  11. Conners, F. A., Wyatt, B. S., &Dulaney, C. L. (1998). Cognitive representation of motion in individuals with mental retardation.American Journal on Mental Retardation,102, 438–450.PubMedGoogle Scholar
  12. Cooper, L. A., &Munger, M. P. (1993). Extrapolations and remembering positions along cognitive trajectories: Uses and limitations of analogies to physical momentum. In N. Eilan, R. McCarthy, & B. Brewer (Eds.),Spatial representation: Problems in philosophy and psychology (pp. 112–131). Cambridge, MA: Blackwell.Google Scholar
  13. Dawson, M. R. W. (1998).Understanding cognitive science. Malden, MA: Blackwell.Google Scholar
  14. Desmurget, M., &Grafton, S. (2003). Feedback or feedforward control: End of a dichotomy. In S. H. Johnson-Frey (Ed.),Taking action: Cognitive neuroscience perspectives on intentional acts (pp. 289–338). Cambridge, MA: MIT Press.Google Scholar
  15. Faust, M. (1990).Representational momentum: A dual process perspective. Unpublished doctoral dissertation, University of Oregon, Eugene.Google Scholar
  16. Favretto, A. (2002).Displaced representations of targets undergoing luminance transformations. Unpublished doctoral dissertation, University of Trieste.Google Scholar
  17. Favretto, A., Hubbard, T. L., Brandimonte, M. A., &Gerbino, W. (1999). Effects of background luminance on representational momentum for lightness [Abstract].Perception,28(Suppl.), 77.Google Scholar
  18. Finke, R. A., &Freyd, J. J. (1985). Transformations of visual memory induced by implied motions of pattern elements.Journal of Experimental Psychology: Learning, Memory, & Cognition,11, 780–794.Google Scholar
  19. Finke, R. A., &Freyd, J. J. (1989). Mental extrapolation and cognitive penetrability: Reply to Ranney and proposals for evaluative criteria.Journal of Experimental Psychology: General,118, 403–408.Google Scholar
  20. Finke, R. A., Freyd, J. J., &Shyi, G. C. W. (1986). Implied velocity and acceleration induce transformations of visual memory.Journal of Experimental Psychology: General,115, 175–188.Google Scholar
  21. Finke, R. A., &Shyi, G. C. W. (1988). Mental extrapolation and representational momentum for complex implied motions.Journal of Experimental Psychology: Learning, Memory, & Cognition,14, 112–120.Google Scholar
  22. Fodor, J. A. (1983).The modularity of mind. Cambridge, MA: MIT Press.Google Scholar
  23. Foster, D. H., &Gravano, S. (1982). Overshoot of curvature in visual apparent motion.Perception & Psychophysics,31, 411–420.Google Scholar
  24. Freyd, J. J. (1983). The mental representation of movement when static stimuli are viewed.Perception & Psychophysics,33, 575–581.Google Scholar
  25. Freyd, J. J. (1987). Dynamic mental representations.Psychological Review,94, 427–438.PubMedGoogle Scholar
  26. Freyd, J. J., &Finke, R. A. (1984). Representational momentum.Journal of Experimental Psychology: Learning, Memory, & Cognition,10, 126–132.Google Scholar
  27. Freyd, J. J., &Finke, R. A. (1985). A velocity effect for representational momentum.Bulletin of the Psychonomic Society,23, 443–446.Google Scholar
  28. Freyd, J. J., &Johnson, J. Q. (1987). Probing the time course of representational momentum.Journal of Experimental Psychology: Learning, Memory, & Cognition,13, 259–269.Google Scholar
  29. Freyd, J. J., &Jones, K. T. (1994). Representational momentum for a spiral path.Journal of Experimental Psychology: Learning, Memory, & Cognition,20, 968–976.Google Scholar
  30. Freyd, J. J., Kelly, M. H., &DeKay, M. L. (1990). Representational momentum in memory for pitch.Journal of Experimental Psychology: Learning, Memory, & Cognition,16, 1107–1117.Google Scholar
  31. Freyd, J. J., & Miller, G. F. (1992, November).Creature motion. Paper presented at the 33rd Annual Meeting of the Psychonomic Society, St. Louis.Google Scholar
  32. Freyd, J. J., &Pantzer, T. M. (1995). Static patterns moving in the mind. In S. M. Smith, T. B. Ward, & R. A. Finke (Eds.),The creative cognition approach (pp. 181–204). Cambridge, MA: MIT Press.Google Scholar
  33. Freyd, J. J., Pantzer, T. M., &Cheng, J. L. (1988). Representing statics as forces in equilibrium.Journal of Experimental Psychology: General,117, 395–407.Google Scholar
  34. Futterweit, L. R., &Beilin, H. (1994). Recognition memory for movement in photographs: A developmental study.Journal of Experimental Child Psychology,57, 163–179.PubMedGoogle Scholar
  35. Gelman, R., Durgin, F., &Kaufman, L. (1995). Distinguishing between animates and inanimates: Not by motion alone. In D. Sperber, D. Premack, & A. J. Premack (Eds.),Causal cognition: A multidisciplinary debate (pp. 150–184). Oxford: Oxford University Press, Clarendon Press.Google Scholar
  36. Getzmann, S. (2005). Representational momentum in spatial hearing does not depend on eye movements.Experimental Brain Research,165, 229–238.Google Scholar
  37. Getzmann, S., Lewald, J., &Guski, R. (2004). Representational momentum in spatial hearing.Perception,33, 591–599.PubMedGoogle Scholar
  38. Gottesman, C. V., &Intraub, H. (2002). Surface construal and the mental representation of scenes.Journal of Experimental Psychology: Human Perception & Performance,28, 589–599.Google Scholar
  39. Gray, R., &Thornton, I. M. (2001). Exploring the link between time to collision and representational momentum.Perception,30, 1007–1022.PubMedGoogle Scholar
  40. Halpern, A. R., &Kelly, M. H. (1993). Memory biases in left versus right implied motion.Journal of Experimental Psychology: Learning, Memory, & Cognition,19, 471–484.Google Scholar
  41. Hayes, A. E., &Freyd, J. J. (2002). Representational momentum when attention is divided.Visual Cognition,9, 8–27.Google Scholar
  42. Hayes, A. E., Sacher, G., Thornton, I. M., Sereno, M. E., &Freyd, J. J. (1996). Representational momentum in depth using stereopsis [ARVO Abstract 2120].Investigative Ophthalmology & Visual Science,37(Suppl. 3), S467.Google Scholar
  43. Heider, F., &Simmel, M. (1944). An experimental study of apparent behavior.American Journal of Psychology,57, 243–259.Google Scholar
  44. Hommel, B. (1996). Toward an action-concept model of stimulus-response compatibility. In B. Hommel & W. Prinz (Eds.),Theoretical issues in stimulus—response compatibility (pp. 281–320). Amsterdam: North-Holland.Google Scholar
  45. Hubbard, T. L. (1990). Cognitive representation of linear motion: Possible direction and gravity effects in judged displacement.Memory & Cognition,18, 299–309.Google Scholar
  46. Hubbard, T. L. (1993a). Auditory representational momentum: Musical schemata and modularity.Bulletin of the Psychonomic Society,31, 201–204.Google Scholar
  47. Hubbard, T. L. (1993b). The effects of context on visual representational momentum.Memory & Cognition,21, 103–114.Google Scholar
  48. Hubbard, T. L. (1994). Judged displacement: A modular process?American Journal of Psychology,107, 359–373.Hubbard,T. L. (1995a). Auditory representational momentum: Surface form, velocity, and direction effects.American Journal of Psychology,108, 255-274.Google Scholar
  49. Hubbard, T. L. (1995b). Cognitive representation of motion: Evidence for representational friction and gravity analogues.Journal of Experimental Psychology: Learning, Memory, & Cognition,21, 241–254.Google Scholar
  50. Hubbard, T. L. (1995c). Environmental invariants in the representation of motion: Implied dynamics and representational momentum, gravity, friction, and centripetal force.Psychonomic Bulletin & Review,2, 322–338.Google Scholar
  51. Hubbard, T. L. (1996a). Displacement in depth: Representational momentum and boundary extension.Psychological Research,59, 33–47.PubMedGoogle Scholar
  52. Hubbard, T. L. (1996b). Representational momentum, centripetal force, and curvilinear impetus.Journal of Experimental Psychology: Learning, Memory, & Cognition,22, 1049–1060.Google Scholar
  53. Hubbard, T. L. (1997). Target size and displacement along the axis of implied gravitational attraction: Effects of implied weight and evidence of representational gravity.Journal of Experimental Psychology: Learning, Memory, & Cognition,23, 1484–1493.Google Scholar
  54. Hubbard, T. L. (1998a). Representational momentum and other displacements in memory as evidence for nonconscious knowledge of physical principles. In S. R. Hameroff, A. W. Kaszniak, & A. C. Scott (Eds.),Toward a science of consciousness II: The second Tucson discussions and debates (pp. 505–512). Cambridge, MA: MIT Press.Google Scholar
  55. Hubbard, T. L. (1998b). Some effects of representational friction, target size, and memory averaging on memory for vertically moving targets.Canadian Journal of Experimental Psychology,52, 44–49.PubMedGoogle Scholar
  56. Hubbard, T. L. (1999). How consequences of physical principles influence mental representation: The environmental invariants hypothesis. In P. R. Killeen & W. R. Uttal (Eds.),Fechner Day 99: The end of 20th century psychophysics. Proceedings of the 15th Annual Meeting of the International Society for Psychophysics (pp. 274–279). Tempe, AZ: International Society for Psychophysics.Google Scholar
  57. Hubbard, T. L. (2001). The effect of height in the picture plane on the forward displacement of ascending and descending targets.Canadian Journal of Experimental Psychology,55, 325–330.PubMedGoogle Scholar
  58. Hubbard, T. L. (2004). The perception of causality: Insights from Michotte’s launching effect, naive impetus theory, and representational momentum. In A. M. Oliveira, M. P. Teixeira, G. F. Borges, & M. J. Ferro (Eds.),Fechner Day 2004 (pp. 116–121). Coimbra, Portugal: International Society for Psychophysics.Google Scholar
  59. Hubbard, T. L. (in press-a). Approaches to representational momentum: Theories and models. In R. Nijhawan & B. Khurana (Eds.),Space and time perception and action. Cambridge: Cambridge University Press.Google Scholar
  60. Hubbard,T. L. (in press-b). Bridging the gap: Possible roles and contributions of representational momentum.Psicológica.Google Scholar
  61. Hubbard, T. L., &Bharucha, J. J. (1988). Judged displacement in apparent vertical and horizontal motion.Perception & Psychophysics,44, 211–221.Google Scholar
  62. Hubbard, T. L., &Blessum, J. A. (2001). A structural dynamic of form: Displacements in memory for the size of an angle.Visual Cognition,8, 725–749.Google Scholar
  63. Hubbard, T. L., Blessum, J. A., &Ruppel, S. E. (2001). Representational momentum and Michotte’s “launching effect” paradigm.Journal of Experimental Psychology: Learning, Memory, & Cognition,27, 294–301.Google Scholar
  64. Hubbard, T. L., & Courtney, J. R. (in press). Evidence suggestive of separate visual dynamics in perception and in memory. In L. Albertazzi (Ed.),Visual thought: The depictive space of the mind. Amsterdam: Benjamins.Google Scholar
  65. Hubbard, T. L., &Favretto, A. (2003). Naive impetus and Michotte’s “tool effect”: Evidence from representational momentum.Psychological Research,67, 134–152.PubMedGoogle Scholar
  66. Hubbard, T. L., Matzenbacher, D. L., &Davis, S. E. (1999). Representational momentum in children: Dynamic information and analogue representation.Perceptual & Motor Skills,88, 910–916.Google Scholar
  67. Hubbard, T. L., &Motes, M. A. (2002). Does representational momentum reflect a distortion of the length or the endpoint of a trajectory?Cognition,82, B89-B99.PubMedGoogle Scholar
  68. Hubbard, T. L., &Motes, M. A. (2005). An effect of context on whether memory for initial position exhibits a Fröhlich effect or an onset repulsion effect.Quarterly Journal of Experimental Psychology,58A, 961–979.Google Scholar
  69. Hubbard, T. L., &Ruppel, S. E. (1999). Representational momentum and landmark attraction effects.Canadian Journal of Experimental Psychology,53, 242–256.Google Scholar
  70. Hubbard, T. L., &Ruppel, S. E. (2000). Spatial memory averaging, the landmark attraction effect, and representational gravity.Psychological Research,59, 41–55.Google Scholar
  71. Hubbard, T. L., &Ruppel, S. E. (2002). A possible role of naïve impetus in Michotte’s “launching effect”: Evidence from representational momentum.Visual Cognition,9, 153–176.Google Scholar
  72. Hubbard, T. L., Ruppel, S. E., &Courtney, J. R. (2005). The force of appearance: Gamma movement, naive impetus, and representational momentum.Psicológica,26, 209–228.Google Scholar
  73. Intraub, H. (2002). Anticipatory spatial representation of natural scenes: Momentum without movement?Visual Cognition,9, 93–119.Google Scholar
  74. Intraub, H., Bender, R. S., &Mangels, J. A. (1992). Looking at pictures but remembering scenes.Journal of Experimental Psychology: Learning, Memory, & Cognition,18, 180–191.Google Scholar
  75. Intraub, H., Gottesman, C. V., &Bills, A. J. (1998). Effects of perceiving and imaging scenes on memory for pictures.Journal of Experimental Psychology: Learning, Memory, & Cognition,24, 186–201.Google Scholar
  76. Jarrett, C. B., Phillips, M., Parker, A., &Senior, C. (2002). Implicit motion perception in schizotypy and schizophrenia: A representational momentum study.Cognitive Neuropsychiatry,7, 1–14.PubMedGoogle Scholar
  77. Johansson, G. (1973). Visual perception of biological motion and a model for its analysis.Perception & Psychophysics,14, 201–211.Google Scholar
  78. Johnston, H. M., & Jones, M. R. (in press). Higher-order pattern structure influences auditory representational momentum.Journal of Experimental Psychology: Human Perception & Performance.Google Scholar
  79. Jones, L. A. (1988). Motor illusions: What do they reveal about proprioception?Psychological Bulletin,103, 72–86.PubMedGoogle Scholar
  80. Joordens, S., Spalek, T. M., Razmy, S., &van Duijn, M. (2004). A Clockwork Orange: Compensation opposing momentum in memory for location.Memory & Cognition,32, 39–50.Google Scholar
  81. Jordan, J. S. (1998). Recasting Dewey’s critique of the reflex-arc concept via a theory of anticipatory consciousness: Implications for theories of perception.New Ideas in Psychology,16, 165–187.Google Scholar
  82. Jordan, J. S., &Knoblich, G. (2004). Spatial perception and control.Psychonomic Bulletin & Review,11, 54–59.Google Scholar
  83. Jordan, J. S., Stork, S., Knuf, L., Kerzel, D., &Müsseler, J. (2002). Action planning affects spatial localization. In W. Prinz & B. Hommel (Eds.),Common mechanisms in perception and action: Attention and performance XIX (pp. 158–176). New York: Oxford University Press.Google Scholar
  84. Kelly, M. H., &Freyd, J. J. (1987). Explorations of representational momentum.Cognitive Psychology,19, 369–401.PubMedGoogle Scholar
  85. Kerzel, D. (2000). Eye movements and visible persistence explain the mislocalization of the final position of a moving target.Vision Research,40, 3703–3715.PubMedGoogle Scholar
  86. Kerzel, D. (2002a). Attention shifts and memory averaging.Quarterly Journal of Experimental Psychology,55A, 425–443.Google Scholar
  87. Kerzel, D. (2002b). The locus of “memory displacementrd is at least partially perceptual: Effects of velocity, expectation, friction, memory averaging, and weight.Perception & Psychophysics,64, 680–692.Google Scholar
  88. Kerzel, D. (2002c). A matter of design: No representational momentum without predictability.Visual Cognition,9, 66–80.Google Scholar
  89. Kerzel, D. (2003a). Attention maintains mental extrapolation of target position: Irrelevant distractors eliminate forward displacement after implied motion.Cognition,88, 109–131.PubMedGoogle Scholar
  90. Kerzel, D. (2003b). Mental extrapolation of target position is strongest with weak motion signals and motor responses.Vision Research,43, 2623–2635.PubMedGoogle Scholar
  91. Kerzel, D. (2003c). Centripetal force draws the eyes, not memory of the target, toward the center.Journal of Experimental Psychology: Learning, Memory, & Cognition,29, 458–466.Google Scholar
  92. Kerzel, D., &Gegenfurtner, K. R. (2003). Neuronal processing delays are compensated in the sensorimotor branch of the visual system.Current Biology,13, 1975–1978.PubMedGoogle Scholar
  93. Kerzel, D., Jordan, J. S., &Müsseler, J. (2001). The role of perception in the mislocalization of the final position of a moving target.Journal of Experimental Psychology: Human Perception & Performance,27, 829–840.Google Scholar
  94. Koseleff, P. (1957). Studies in the perception of heaviness: I. Some relevant facts concerning the size-weight-effect (SWE).Acta Psychologica,13, 242–252.Google Scholar
  95. Kourtzi, Z., &Kanwisher, N. (2000). Activation in human MT/MST for static images with implied motion.Journal of Cognitive Neuroscience,12, 1–8.Google Scholar
  96. Kozhevnikov, M., &Hegarty, M. (2001). Impetus beliefs as default heuristics: Dissociation between explicit and implicit knowledge about motion.Psychonomic Bulletin & Review,8, 439–453.Google Scholar
  97. Liberman, A. M., &Mattingly, I. G. (1985). The motor theory of speech perception revised.Cognition,21, 1–36.PubMedGoogle Scholar
  98. Marr, D. (1982).Vision. New York: Freeman.Google Scholar
  99. McCloskey, M., &Kohl, D. (1983). Naive physics: The curvilinear impetus principle and its role in interactions with moving objects.Journal of Experimental Psychology: Learning, Memory, & Cognition,9, 146–156.Google Scholar
  100. McIntyre, J., Zago, M., Berthoz, A., &Lacquaniti, F. (2001). Does the brain model Newton’s laws?Nature Neuroscience, 4, 693–694.PubMedGoogle Scholar
  101. Michotte, A. (1963).The perception of causality (T. R. Miles & E. Miles, Trans.). New York: Basic Books. (Original work published 1946)Google Scholar
  102. Milner, A. D., &Goodale, M. A. (1995).The visual brain in action. New York: Oxford University Press.Google Scholar
  103. Munger, M. P., &Minchew, J. H. (2002). Parallels between remembering and predicting an object’s location.Visual Cognition,9, 177–194.Google Scholar
  104. Munger, M. P., &Owens, T. R. (2004). Representational momentum and the flash-lag effect.Visual Cognition,11, 81–103.Google Scholar
  105. Munger, M. P., Owens, T. R., &Conway, J. E. (2005). Are boundary extension and representational momentum related?Visual Cognition,12, 1041–1056.Google Scholar
  106. Munger, M. P., Solberg, J. L., &Horrocks, K. K. (1999). The relationship between mental rotation and representational momentum.Journal of Experimental Psychology: Learning, Memory, & Cognition,25, 1557–1568.Google Scholar
  107. Munger, M. P., Solberg, J. L., Horrocks, K. K., &Preston, A. S. (1999). Representational momentum for rotations in depth: Effects of shading and axis.Journal of Experimental Psychology: Learning, Memory, & Cognition,25, 157–171.Google Scholar
  108. Müsseler, J., Stork, S., &Kerzel, D. (2002). Comparing mislocalizations with moving stimuli: The Fröhlich effect, the flash-lag, and representational momentum.Visual Cognition,9, 120–138.Google Scholar
  109. Nagai, M., Kazai, K., &Yagi, A. (2002). Larger forward memory shift in the direction of gravity.Visual Cognition,9, 28–40.Google Scholar
  110. Nagai, M., &Yagi, A. (2001). The pointedness effect on representational momentum.Memory & Cognition,29, 91–99.Google Scholar
  111. Nijhawan, R. (2002). Neural delays, visual motion and the flash-lag effect.Trends in Cognitive Sciences,6, 387–393.PubMedGoogle Scholar
  112. Poljansek, A. (2002). The effect of motion acceleration on displacement of continuous and staircase motion in the frontoparallel plane.Psiholoska Obzorja/Horizons of Psychology,11, 7–21.Google Scholar
  113. Pratt, J., Spalek, T. M., &Bradshaw, F. (1999). The time to detect targets at inhibited and noninhibited locations: Preliminary evidence for attentional momentum.Journal of Experimental Psychology: Human Perception & Performance,25, 730–746.Google Scholar
  114. Premack, D., &Premack, A. J. (1995). Intention as psychological cause. In D. Sperber, D. Premack, & A. J. Premack (Eds.),Causal cognition: A multidisciplinary debate (pp. 185–199). Oxford: Oxford University Press, Clarendon Press.Google Scholar
  115. Prinz, W. (1992). Why don’t we perceive our brain states?European Journal of Cognitive Psychology,4, 1–20.Google Scholar
  116. Prinz, W. (1997). Perception and action planning.European Journal of Cognitive Psychology,9, 129–154.Google Scholar
  117. Ranney, M. (1989). Internally represented forces may be cognitively penetrable: Comment on Freyd, Pantzer, and Cheng (1988).Journal of Experimental Psychology: General,118, 399–402.Google Scholar
  118. Rao, H., Han, S., Jiang, Y., Xue, Y., Gu, H., Cui, Y., &Gao, D. (2004). Engagement of the prefrontal cortex in representational momentum: An fMRI study.NeuroImage,23, 98–103.PubMedGoogle Scholar
  119. Reed, C. L., &Vinson, N. G. (1996). Conceptual effects on representational momentum.Journal of Experimental Psychology: Human Perception & Performance,22, 839–850.Google Scholar
  120. Sakata, H., Kusunoki, M., &Tanaka, Y. (1993). Neural mechanisms of perception of linear and rotary movement in depth in the parietal association cortex of the monkey. In T. Ono, L. R. Squire, M. E. Raichle, D. I. Perrett, & M. Fukuda (Eds.),Brain mechanisms of perception and memory (pp. 166–182). New York: Oxford University Press.Google Scholar
  121. Senior, C., Barnes, J., Giampietroc, V., Simmons, A., Bullmore, E. T., Brammer, M., &David, A. S. (2000). The functional neuroanatomy of implicit-motion perception or “representational momentum”Current Biology,10, 16–22.PubMedGoogle Scholar
  122. Senior, C., Ward, J., &David, A. S. (2002). Representational momentum and the brain: An investigation of the functional necessity of V5/MT.Visual Cognition,9, 81–92.Google Scholar
  123. Shiffrar, M., &Freyd, J. J. (1990). Apparent motion of the human body.Psychological Science,1, 257–264.Google Scholar
  124. Shiffrar, M., &Freyd, J. J. (1993). Timing and apparent motion path choice with human body photographs.Psychological Science,4, 379–384.Google Scholar
  125. Sillito, A. M., Jones, H. E., Gerstein, G. L., &West, D. C. (1994). Feature-linked synchronization of thalamic relay cell firing induced by feedback from the visual cortex.Nature,369, 479–482.PubMedGoogle Scholar
  126. Snyder, J. J., Schmidt, W. C., &Kingstone, A. (2001). Attentional momentum does not underlie the inhibition of return.Journal of Experimental Psychology: Human Perception & Performance,27, 1420–1432.Google Scholar
  127. Stewart, J. A. (1982).Perception of animacy. Unpublished doctoral dissertation, University of Pennsylvania.Google Scholar
  128. Thornton, I. M. (1998).The perception of dynamic human faces. Unpublished doctoral dissertation. University of Oregon, Eugene.Google Scholar
  129. Thornton, I. M. (2002). The onset repulsion effect.Spatial Vision,15, 219–243.PubMedGoogle Scholar
  130. Thornton, I. M., &Hayes, A. E. (2004). Anticipating action in complex scenes.Visual Cognition,11, 341–370.Google Scholar
  131. Thornton, I. M., &Hubbard, T. L. (Eds.) (2002).Representational momentum: New findings, new directions. Hove, U.K.: Taylor & Francis, Psychology Press.Google Scholar
  132. Verfaillie, K., &Daems, A. (2002). Representing and anticipating human actions in vision.Visual Cognition,9, 217–232.Google Scholar
  133. Verfaillie, K., De Troy, A., &Van Rensbergen, J. (1994). Transsaccadic integration of biological motion.Journal of Experimental Psychology: Learning, Memory, & Cognition,20, 649–670.Google Scholar
  134. Verfaillie, K., &d’Ydewalle, G. (1991). Representational momentum and event course anticipation in the perception of implied periodical motions.Journal of Experimental Psychology: Learning, Memory, & Cognition,17, 302–313.Google Scholar
  135. Vinson, N. G., &Reed, C. L. (2002). Sources of object-specific effects in representational momentum.Visual Cognition,9, 41–65.Google Scholar
  136. White, H., Minor, S. W., Merrell, J., &Smith, T. (1993). Representational-momentum effects in the cerebral hemispheres.Brain & Cognition,22, 161–170.Google Scholar
  137. Whitney, D., &Cavanagh, P. (2002). Surrounding motion affects the perceived locations of moving stimuli.Visual Cognition,9, 139–152.Google Scholar

Copyright information

© Psychonomic Society, Inc. 2005

Authors and Affiliations

  1. 1.Department of PsychologyTexas Christian UniversityFort Worth

Personalised recommendations