Advertisement

Attention, Perception, & Psychophysics

, Volume 72, Issue 8, pp 2274–2288 | Cite as

Rhythmic context modulates foreperiod effects

  • Robert J. Ellis
  • Mari Riess Jones
Research Articles
  • 370 Downloads

Abstract

Two experiments examined hypotheses about the roles of probabilistic uncertainty and rhythmic context on attentional preparation as reflected by choice response times (RTs) to the final tone of auditory sequences. Nonisochronous sequences with tone timings either arranged metrically or scrambled were linked with one of three different sequence-final time intervals, or foreperiods (FPs), which varied randomly from trial to trial. Two primary results emerged. First, RTs were faster to target tones ending metrical rhythms than to targets ending scrambled rhythms. Second, metrical contexts elicited RTs that increased with FP duration, whereas scrambled contexts elicited RTs that often decreased with FP duration, despite equivalent variability of time intervals in metrical and scrambled contexts. The results suggest that time relations implied by metrical rhythms systematically modulate preparatory responses to sequence-final FPs.

Keywords

Temporal Preparation Preparatory Activity Target Tone Temporal Expectancy Probabilistic Uncertainty 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Barnes, R., &Jones, M. R. (2000). Expectancy, attention, and time.Cognitive Psychology,41, 254–311.CrossRefPubMedGoogle Scholar
  2. Bartlett, N. R., &Bartlett, S. C. (1959). Synchronization of a motor response with an anticipated sensory event.Psychological Review,66, 203–218.CrossRefPubMedGoogle Scholar
  3. Bausenhart, K. M., Rolke, B., &Ulrich, R. (2008). Temporal preparation improves temporal resolution: Evidence from constant foreperiods.Perception & Psychophysics,70, 1504–1514.CrossRefGoogle Scholar
  4. Bertelson, P. (1967). The time-course of preparation.Quarterly Journal of Experimental Psychology,19, 272–279.CrossRefPubMedGoogle Scholar
  5. Bertelson, P., &Tisseyre, F. (1968). The time-course of preparation with regular and irregular foreperiods.Quarterly Journal of Experimental Psychology,20, 297–300.CrossRefPubMedGoogle Scholar
  6. Bregman, A. S. (1990).Auditory scene analysis: The perceptual organization of sound. Cambridge, MA: MIT Press.Google Scholar
  7. Chen, Y., Repp, B. H., &Patel, A. D. (2002). Spectral decomposition of variability in synchronization and continuation tapping: Comparisons between auditory and visual pacing and feedback.Human Movement Science,21, 515–532.CrossRefPubMedGoogle Scholar
  8. Correa, A., Lupiáñez, J., &Tudela, P. (2005). Attentional preparation based on temporal expectancy modulates processing at the perceptual level.Psychonomic Bulletin & Review,12, 328–334.Google Scholar
  9. Correa, A., Lupiáñez, J., &Tudela, P. (2006). The attentional mechanism of temporal orienting: Determinants and attributes.Experimental Brain Research,169, 58–68.CrossRefGoogle Scholar
  10. Correa, A., &Nobre, A. C. (2008). Neural modulation by regularity and passage of time.Journal of Neurophysiology,100, 1649–1655.CrossRefPubMedGoogle Scholar
  11. Correa, A., Sanabria, D., Spence, C., Tudela, P., &Lupiáñez, J. (2006). Selective temporal attention enhances the temporal resolution of visual perception: Evidence from a temporal order judgment task.Brain Research,1070, 202–205.CrossRefPubMedGoogle Scholar
  12. Coull, J. T., Frith, C. D., Büchel, C., &Nobre, A. C. (2000). Orienting attention in time: Behavioral and neuroanatomical distinction between exogenous and endogenous shifts.Neuropsychologia,38, 808–819.CrossRefPubMedGoogle Scholar
  13. Coull, J. T., &Nobre, A. C. (1998). Where and when to pay attention: The neural systems for directing attention to spatial locations and to time intervals as revealed by both PET and fMRI.Journal of Neuroscience,18, 7426–7435.PubMedGoogle Scholar
  14. Doherty, J., Rao, A., Mesulam, M., &Nobre, A. (2005). Synergistic effect of combined temporal and spatial expectations on visual attention.Journal of Neuroscience,25, 8259–8266.CrossRefPubMedGoogle Scholar
  15. Drake, C., &Botte, M. C. (1993). Tempo sensitivity in auditory sequences: Evidence for a multiple-look model.Perception & Psychophysics,54, 277–286.Google Scholar
  16. Drazin, D. H. (1961). Effects of foreperiod, foreperiod variability and probability of stimulus occurrence on simple reaction time.Journal of Experimental Psychology,62, 43–50.CrossRefPubMedGoogle Scholar
  17. Ellis, R. J., &Jones, M. R. (2009). The role of accent salience and joint accent structure in meter perception.Journal Experimental Psychology: Human Perception & Performance,35, 264–280.CrossRefGoogle Scholar
  18. Fraisse, P. (ED.) (1978).Time and rhythm perception. New York: Academic Press.Google Scholar
  19. Garner, W. R. (1974).The processing of information and structure. Potomac, MD: Erlbaum.Google Scholar
  20. Grahn, J. A., &Brett, M. (2007). Rhythm and beat perception in motor areas of the brain.Journal of Cognitive Neuroscience,19, 893–906.CrossRefPubMedGoogle Scholar
  21. Grahn, J. A., &Brett, M. (2009). Impairment of beat-based rhythm discrimination in Parkinson’s disease.Cortex,45, 54–61.CrossRefPubMedGoogle Scholar
  22. Grondin, S. (2001). From physical time to the first and second moments of psychological time.Psychological Bulletin,127, 22–44.CrossRefPubMedGoogle Scholar
  23. Grondin, S., &Rammsayer, T. (2003). Variable foreperiods and temporal discrimination.Quarterly Journal of Experimental Psychology,56A, 731–765.Google Scholar
  24. Handel, S. (1992). The differentiation of rhythmic structure.Perception & Psychophysics,52, 497–507.Google Scholar
  25. Jones, M. R. (1976). Time, our lost dimension: Toward a new theory of perception, attention, and memory.Psychological Review,83, 323–355.CrossRefPubMedGoogle Scholar
  26. Jones, M. R. (2009). Musical time. In S. Hallam, I. Cross, & M. Thaut, (Eds.),Oxford handbook of music psychology (pp. 81–92). Oxford: Oxford University Press.Google Scholar
  27. Jones, M. R., &Boltz, M. (1989). Dynamic attending and responses to time.Psychological Review,96, 459–491.CrossRefPubMedGoogle Scholar
  28. Jones, M. R., Boltz, M., &Kidd, G. (1982). Controlled attending as a function of melodic and temporal context.Perception & Psychophysics,32, 211–218.Google Scholar
  29. Jones, M. R., Johnston, H. M., &Puente, J. (2006). Effects of auditory pattern structure on anticipatory and reactive attending.Cognitive Psychology,53, 59–96.CrossRefPubMedGoogle Scholar
  30. Jones, M. R., Kidd, G., &Wetzel, R. (1981). Evidence for rhythmic attention.Journal of Experimental Psychology: Human Perception & Performance,7, 1059–1073.CrossRefGoogle Scholar
  31. Jones, M. R., &Yee, W. (1997). Sensitivity to time change: The role of context and skill.Journal Experimental Psychology: Human Perception & Performance,23, 693–709.CrossRefGoogle Scholar
  32. Keppel, G., &Wickens, T. D. (2004).Design and analysis: A researcher’s handbook (4th ed.). Upper Saddle River, NJ: Prentice Hall.Google Scholar
  33. Kidd, G. R., Boltz, M., &Jones, M. R. (1984). Some effects of rhythmic context on melody recognition.American Journal of Psychology,97, 153–173.CrossRefPubMedGoogle Scholar
  34. Klein, R., &Kerr, B. (1974). Visual signal detection and the locus of foreperiod effects.Memory & Cognition,2, 431–435.Google Scholar
  35. Klemmer, E. T. (1956). Time uncertainty in simple reaction time.Journal of Experimental Psychology,51, 179–184.CrossRefPubMedGoogle Scholar
  36. Lange, K., &Heil, M. (2008). Temporal attention in the processing of short melodies: Evidence from event-related potentials.Musicea Scientiae,12, 27–48.Google Scholar
  37. Large, E. W. (2010). Neurodynamics of music. In M. R. Jones, A. N. Popper, & R. R. Fay (Eds.),Music perception (pp. 201–231). New York: Springer.CrossRefGoogle Scholar
  38. Large, E. W., &Jones, M. R. (1999). The dynamics of attending: How people track time-varying events.Psychological Review,106, 119–159.CrossRefGoogle Scholar
  39. Large, E. W., &Kolen, J. F. (1994). Resonance and the perception of musical meter.Connection Science,6, 177–208.CrossRefGoogle Scholar
  40. Lerdahl, F., &Jackendoff, R. (1983).A generative theory of tonal music. Cambridge, MA: MIT Press.Google Scholar
  41. London, J. M. (2004).Hearing in time: Psychological aspects of musical meter. New York: Oxford University Press.Google Scholar
  42. Los, S. A., &Schut, M. L. (2008). The effective time course of preparation.Cognitive Psychology,57, 20–55.CrossRefPubMedGoogle Scholar
  43. Luce, R. D. (1986).Response times: Their role in inferring elementary mental organization. New York: Oxford University Press.Google Scholar
  44. Martin, T., Egly, R., Houch, J. M., Bish, J. P., Barrera, B. D., Lee, D. C., &Tesche, C. D. (2005). Chronometric evidence for entrained attention.Perception & Psychophysics,67, 168–184.Google Scholar
  45. Martin, T., Houck, J. M., Bish, J. P., Ki/>ci/>c, D., Woodruff, C. C., Moses, S. N., et al. (2006). MEG reveals different contributions of somatomotor cortex and cerebellum to simple reaction time after temporally structured cues.Human Brain Mapping,27, 552–561.CrossRefPubMedGoogle Scholar
  46. McAuley, J. D. (2010). Tempo and rhythm. In M. R. Jones, A. N. Popper, & R. R. Fay (Eds.),Music perception (pp. 165–199). New York: Springer.CrossRefGoogle Scholar
  47. McAuley, J. D., &Jones, M. R. (2003). Modeling effects of rhythmic context on perceived duration: A comparison of interval and entrainment approaches to short-interval timing.Journal of Experimental Psychology: Human Perception & Performance,29, 1102–1125.CrossRefGoogle Scholar
  48. McAuley, J. D., &Kidd, G. R. (1998). Effect of deviations from temporal expectations on tempo discrimination of isochronous tone sequences.Journal of Experimental Psychology: Human Perception & Performance,24, 1786–1800.CrossRefGoogle Scholar
  49. McAuley, J. D., &Miller, N. S. (2007). Picking up the pace: Effects of global temporal context on sensitivity to the tempo of auditory sequences.Perception & Psychophysics,69, 709–718.Google Scholar
  50. McAuley, J. D., &Semple, P. (1999). The effect of tempo and musical experience on perceived beat.Australian Journal of Psychology,51, 176–187.CrossRefGoogle Scholar
  51. Müller-Gethmann, H., Ulrich, R., &Rinkenauer, G. (2003). Locus of the effect of temporal preparation: Evidence from the lateralized readiness potential.Psychophysiology,40, 597–611.CrossRefPubMedGoogle Scholar
  52. Niemi, P., &Näätänen, R. (1981). Foreperiod and simple reaction time.Psychological Bulletin,89, 133–162.CrossRefGoogle Scholar
  53. Olson, I., &Chun, M. (2001). Temporal contextual cuing of visual attention.Journal of Experimental Psychology: Learning, Memory, & Cognition,27, 1299–1313.CrossRefGoogle Scholar
  54. Patel, A. D., &Daniele, J. R. (2003). An empirical comparison of rhythm in language and music.Cognition,87, B35-B45.CrossRefPubMedGoogle Scholar
  55. Patel, A. D., Iversen, J. R., Chen, Y., &Repp, B. H. (2005). The influence of metricality and modality on synchronization with a beat.Experimental Brain Research,163, 226–238.CrossRefGoogle Scholar
  56. Patel, A. D., Iversen, J. R., &Rosenberg, J. C. (2006). Comparing the rhythm and melody of speech and music: The case of British English and French.Journal of Acoustical Society of America,119, 3034–3047.CrossRefGoogle Scholar
  57. Pfordresher, P. Q. (2003). The role of melodic and rhythmic accents in musical structure.Music Perception,20, 431–464.CrossRefGoogle Scholar
  58. Povel, D.-J., &Essens, P. (1985). Perception of temporal patterns.Music Perception,2, 411–440.Google Scholar
  59. Povel, D.-J., &Okkerman, H. (1981). Accents in equitone sequences.Perception & Psychophysics,30, 565–572.Google Scholar
  60. Praamstra, P., Kourtis, D., Kwok, H. F., &Oostenveld, R. (2006). Neurophysiology of implicit timing in serial choice reaction-time performance.Journal of Neuroscience,26, 5448–5455.CrossRefPubMedGoogle Scholar
  61. Ratcliff, R. (1993). Methods for dealing with reaction time outliers.Psychological Bulletin,114, 510–532.CrossRefPubMedGoogle Scholar
  62. Repp, B. H., &Penel, A. (2002). Auditory dominance in temporal processing: new evidence from synchronization with simultaneous visual and auditory sequences.Journal of Experimental Psychology: Human Perception & Performance,28, 1085–1099.CrossRefGoogle Scholar
  63. Requin, J., Grandjon, M., Durup, H., &Reynard, G. (1973). Effects of a timing signal on simple reaction time with a rectangular distribution of foreperiods.Quarterly Journal of Experimental Psychology,25, 344–353.CrossRefGoogle Scholar
  64. Schmidt-Kassow, M., Schubotz, R. I., &Kotz, S. A. (2009). Attention and entrainment: P3b varies as a function of temporal predictability.NeuroReport,20, 31–36.CrossRefPubMedGoogle Scholar
  65. Simon, J. R., &Slaviero, D. P. (1975). Differential effects of a foreperiod countdown procedure on simple and choice reaction time.Journal of Motor Behavior,7, 9–14.Google Scholar
  66. Snyder, J. S., &Krumhansl, C. L. (2001). Tapping to ragtime: Cues to pulse finding.Music Perception,18, 455–489.CrossRefGoogle Scholar
  67. Steinborn, M. B., Rolke, B., Bratzke, D., &Ulrich, R. (2008). Sequential effects within a short foreperiod context: Evidence for the conditioning account of temporal preparation.Acta Psychologica,129, 297–307.CrossRefPubMedGoogle Scholar
  68. Temperley, D. (2001).The cognition of basic musical structures. Cambridge, MA: MIT Press.Google Scholar
  69. Todd, R., Boltz, M. G., &Jones, M. R. (1989). The MIDILAB auditory research system.Psychomusicology,8, 17–28.Google Scholar
  70. Woodrow, H. (1914). The effect upon reaction time of variation in the preparatory interval. InThe measurement of attention [Monograph] (pp. 16–65). Princeton, NJ: Psychological Review.Google Scholar

Copyright information

© Psychonomic Society, Inc. 2010

Authors and Affiliations

  1. 1.Ohio State UniversityColumbus
  2. 2.Beth Israel Deaconess Medical Center and Harvard Medical SchoolBoston
  3. 3.University of CaliforniaSanta Barbara

Personalised recommendations