Psychonomic Bulletin & Review

, Volume 9, Issue 4, pp 637–671 | Cite as

The role of prefrontal cortex in working-memory capacity, executive attention, and general fluid intelligence: An individual-differences perspective

  • Michael J. KaneEmail author
  • Randall W. EngleEmail author
Theoretical and Review Articles


We provide an “executive-attention” framework for organizing the cognitive neuroscience research on the constructs of working-memory capacity (WMC), general fluid intelligence, and prefrontal cortex (PFC) function. Rather than provide a novel theory of PFC function, we synthesize a wealth of singlecell, brain-imaging, and neuropsychological research through the lens of our theory of normal individual differences in WMC and attention control (Engle, Kane, & Tuholski, 1999; Engle, Tuholski, Laughlin, & Conway, 1999). Our critical review confirms the prevalent view that dorsolateral PFC circuitry is critical to executive-attention functions. Moreover, although the dorsolateral PFC is but one critical structure in a network of anterior and posterior “attention control” areas, it does have a unique executiveattention role in actively maintaining access to stimulus representations and goals in interference-rich contexts. Our review suggests the utility of an executive-attention framework for guiding future research on both PFC function and cognitive control.


Prefrontal Cortex Work Memory Capacity Stroop Task Antisaccade Task Executive Attention 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Ackerly, S. (1937). Instinctive, emotional and mental changes following prefrontal lobe extirpation.American Journal of Psychiatry,92, 717–729.Google Scholar
  2. Ahola, K., Vilkki, J., &Servo, A. (1996). Frontal tests do not detect frontal infarctions after ruptured intracranial aneurysm.Brain & Cognition,31, 1–16.Google Scholar
  3. Alexander, G. E., &Fuster, J. M. (1973). Effects of cooling prefrontal cortex on cell firing in the nucleus medialis dorsalis.Brain Research,61, 93–105.PubMedGoogle Scholar
  4. Allport, D. A., Styles, E. A., &Hsieh, S. (1994). Shifting attentional set: Exploring the dynamic control of tasks. In C. Umiltà & M. Moscovitch (Eds.),Attention and performance XV: Conscious and nonconscious information processing (pp. 421–452). Hillsdale, NJ: Erlbaum.Google Scholar
  5. Anderson, S. W., Damasio, H., Jones, R. D., &Tranel, D. (1991). Wisconsin Card Sorting Test performance as a measure of frontal lobe damage.Journal of Clinical & Experimental Neuropsychology,13, 909–922.Google Scholar
  6. Arthur, W., Jr.,Barrett, G. V., &Doverspike, D. (1990). Validation of an information-processing-based test battery for the prediction of handling accidents among petroleum-product transport drivers.Journal of Applied Psychology,75, 621–628.Google Scholar
  7. Awh, E., Jonides, J., Smith, E. E., Schumacher, E. H., Koeppe, R. A., &Katz, S. (1996). Dissociation of storage and rehearsal in verbal working memory: Evidence from positron emission tomography.Psychological Science,7, 25–31.Google Scholar
  8. Baddeley, A. D. (1996). Exploring the central executive.Quarterly Journal of Experimental Psychology,49A, 5–28.Google Scholar
  9. Baddeley, A. D., Della Sala, S., Papagno, C., &Spinnler, H. (1997). Dual-task performance in dysexecutive and nondysexecutive patients with a frontal lesion.Neuropsychology,11, 187–194.PubMedGoogle Scholar
  10. Baddeley, A. D., &Hitch, G. (1974). Working memory. In G. A. Bower (Ed.),The psychology of learning and motivation (Vol. 8, pp. 47–89). New York: Academic Press.Google Scholar
  11. Baddeley, A. D., &Logie, R. (1999). Working memory: The multiple component model. In A. Miyake & P. Shah (Eds.),Models of working memory: Mechanisms of active maintenance and executive control (pp. 28–61). New York: Cambridge University Press.Google Scholar
  12. Baker, S. C., Frith, C. D., Frackowiak, R. S. J., &Dolan, R. J. (1996). Active representation of shape and spatial location in man.Cerebral Cortex,6, 612–619.PubMedGoogle Scholar
  13. Baldo, J. V., &Shimamura, A. P. (1998). Letter and category fluency in patients with frontal lobe lesions.Neuropsychology,12, 259–267.PubMedGoogle Scholar
  14. Baldo, J. V., &Shimamura, A. P. (2000). Spatial and color working memory in patients with lateral prefrontal cortex lesions.Psychobiology,28, 156–167.Google Scholar
  15. Banich, M. T., Milham, M. P., Atchley, R. A., Cohen, N. J., Webb, A., Wszalek, T., Kramer, A. F., Liang, Z. P., Wright, A., Shenker, J., &Magin, R. (2000). fMRI studies of Stroop tasks reveal unique roles of anterior and posterior brain systems in attentional selection.Journal of Cognitive Neuroscience,12, 988–1000.PubMedGoogle Scholar
  16. Barbas, H., &Mesulam, M. M. (1981). Organization of afferent input to subdivisions of area 8 in the rhesus monkey.Journal of Comparative Neurology200, 407–431.PubMedGoogle Scholar
  17. Barbas, H., &Mesulam, M. M. (1985). Cortical afferent input to the principalis region of the rhesus monkey.Neuroscience,15, 619–637.PubMedGoogle Scholar
  18. Barbas, H., &Pandya, D. N. (1991). Patterns of connections of the prefrontal cortex in the rhesus monkey associated with cortical architecture. In H. S. Levin, H. M. Eisenberg, & A. L. Benton (Eds.),Frontal lobe function and dysfunction (pp. 35–58). Oxford: Oxford University Press.Google Scholar
  19. Barch, D. M., Braver, T. S., Nyström, L. E., Forman, S. D., Noll, D. C., &Cohen, J. D. (1997). Dissociating working memory from task difficulty in human prefrontal cortex.Neuropsychologia,35, 1373–1380.PubMedGoogle Scholar
  20. Bartus, R. T., &LaVere, T. E. (1977). Frontal decortication in rhesus monkeys: A test of the interference hypothesis.Brain Research,119, 233–248.PubMedGoogle Scholar
  21. Battersby, W. S., Krieger, H. P., Pollack, M., &Bender, M. B. (1953). Figure-ground discrimination and the “abstract attitude” in patients with cerebral lesions.Archives of Neurology & Psychiatry,70, 703–712.Google Scholar
  22. Battig, K., Rosvold, H. E., &Mishkin, M. (1960). Comparison of the effects of frontal and caudate lesions on delayed response and alternation in monkeys.Journal of Comparative & Physiological Psychology,53, 400–404.Google Scholar
  23. Batuev, A. S., Shaefer, V. I., &Orlov, A. A. (1985). Comparative characteristics of unit activity in the prefrontal and parietal areas during delayed performance in monkeys.Behavioural Brain Research,16, 57–70.PubMedGoogle Scholar
  24. Bauer, R. H., &Fuster, J. M. (1976). Delayed-matching and delayedresponse deficit from cooling dorsolateral prefrontal cortex in monkeys.Journal of Comparative & Physiological Psychology,90, 293–302.Google Scholar
  25. Baylis, G. C., &Rolls, E. T. (1987). Responses of neurons in the inferior temporal cortex in short term and serial recognition memory tasks.Experimental Brain Research,65, 614–622.Google Scholar
  26. Bechara, A., Damasio, H., Tranel, D., &Anderson, S. W. (1998). Dissociation of working memory from decision making within the human prefrontal cortex.Journal of Neuroscience,18, 428–437.PubMedGoogle Scholar
  27. Bench, C. J., Frith, C. D., Grasby, P. M., Friston, K. J., Paulesu, E., Frackowiak, R. S. J., &Dolan, R. J. (1993). Investigations of the functional anatomy of attention using the Stroop test.Neuropsychologia,31, 907–922.PubMedGoogle Scholar
  28. Benedict, R. H. B., Lockwood, A. H., Shucard, J. L., Shucard, D.W., Wack, D., &Murphy, B. W. (1998). Functional neuroimaging of attention in the auditory modality.NeuroReport,9, 121–126.PubMedGoogle Scholar
  29. Benton, A. L. (1968). Differential behavioral effects in frontal lobe disease.Neuropsychologia,6, 53–60.Google Scholar
  30. Berg, E. A. (1948). A simple objective technique for measuring flexibility in thinking.Journal of General Psychology,39, 15–22.PubMedGoogle Scholar
  31. Berman, K. F., Ostrem, J. L., Randolph, C., Gold, J., Goldberg, T.E., Coppola, R., Carson, R. E., Herscovitch, P., &Weinberger, D. R. (1995). Physiological activation of a cortical network during performance of the Wisconsin Card Sorting Test: A positron emission tomography study.Neuropsychologia,33, 1027–1046.PubMedGoogle Scholar
  32. Berman, K. F., Zec, R. F., &Weinberger, D. R. (1986). Physiological dysfunction of dorsolateral prefrontal cortex in schizophrenia: II. Role of neuroleptic treatment, attention, and mental effort.Archives of General Psychiatry,43, 126–135.PubMedGoogle Scholar
  33. Bleckley, M. K. (2001).Individual differences in visual attention and working memory capacity: Further distinctions between where and what. Unpublished doctoral dissertation, Georgia Institute of Technology.Google Scholar
  34. Bolter, J. F., Long, C. J., &Wagner, M. (1983). The utility of the Thurstone Word Fluency Test in identifying cortical damage.Clinical Neuropsychology,5, 77–82.Google Scholar
  35. Boone, K. B. (1999). Neuropsychological assessment of executive functions: Impact of age, education, gender, intellectual level, and vas cular status on executive test scores. In B. L. Miller & J. L. Cummings (Eds.),The human frontal lobes: Functions and disorders (pp. 247–260). New York: Guilford.Google Scholar
  36. Borkowski, J. G. (1965). Interference effects in short-term memory as a function of level of intelligence.American Journal of Mental Deficiency,70, 458–465.PubMedGoogle Scholar
  37. Boussaoud, D., &Wise, S. P. (1993). Primate frontal cortex: Neuronal activity following attentional versus intentional cues.Experimental Brain Research,95, 15–27.Google Scholar
  38. Braver, T. S., Barch, D. M., Kelley, W. M., Buckner, R. L., Cohen, N. J., Miezin, F. M., Snyder, A. Z., Ollinger, J. M., Akbudak, E., Conturo, T. E., &Petersen, S. E. (2001). Direct comparison of prefrontal cortex regions engaged by working and long-term memory tasks.NeuroImage,14, 48–59.PubMedGoogle Scholar
  39. Braver, T. S., &Cohen, J. D. (2000). On the control of control: The role of dopamine in regulating prefrontal function and working memory. In S. Monsell & J. Driver (Eds.),Attention and performance XVIII: Control of cognitive processes (pp. 713–737). Cambridge, MA: MIT Press.Google Scholar
  40. Braver, T. S., Cohen, J. D., Nyström, L. E., Jonides, J., Smith, E. E., &Noll, D. C. (1997). A parametric study of prefrontal cortex involvement in human working memory.NeuroImage,5, 49–62.PubMedGoogle Scholar
  41. Brodmann, K. (1925).Vergleichende Lokalisationslehre der Grosshirnrinde. Leipzig, Germany: Barth.Google Scholar
  42. Butters, M. A., Kaszniak, A. W., Glisky, E. L., Eslinger, P. J., &Schacter, D. L. (1994). Recency discrimination deficits in frontal lobe patients.Neuropsychology,8, 343–353.Google Scholar
  43. Callicott, J. H., Mattay, V. S., Bertolino, A., Finn, K., Coppola, R., Frank, J. A., Goldberg, T. E., &Weinberger, D. R. (1999). Physiological characteristics of capacity constraints in working memory as revealed by functional MRI.Cerebral Cortex,9, 20–26.PubMedGoogle Scholar
  44. Carpenter, P. A., Just, M. A., &Shell, P. (1990). What one intelligence test measures: A theoretical account of the processing in the Raven Progressive Matrices test.Psychological Review,97, 404–431.PubMedGoogle Scholar
  45. Carroll, J. B. (1993).Human cognitive abilities: A survey of factoranalytic studies. New York: Cambridge University Press.Google Scholar
  46. Carroll, J. B. (1996). A three-striatum theory of intelligence: Spearman’s contribution. In I. Dennis & P. Tapsfield (Eds.),Human abilities: Their nature and measurement (pp. 1–17). Mahwah, NJ: Erlbaum.Google Scholar
  47. Casey, B. J., Cohen, J. D., O’Craven, K., Davidson, R. J., Irwin, W., Nelson, C. A., Noll, D. C., Hu, X., Lowe, M. J., Rosen, B. R., Truwitt, C. L., &Turski, P. A. (1998). Reproducibility of fMRI results across four institutions using a spatial working memory task.NeuroImage,8, 249–261.PubMedGoogle Scholar
  48. Chao, L. L., &Knight, R. T. (1998). Contribution of human prefrontal cortex to delay performance.Journal of Cognitive Neuroscience,10, 167–177.PubMedGoogle Scholar
  49. Chorover, S. L., &Cole, M. (1966). Delayed alternation performance in patients with cerebral lesions.Neuropsychologia,4, 1–7.Google Scholar
  50. Chow, T. W., &Cummings, J. L. (1999). Frontal-subcortical circuits. In B. L. Miller & J. L. Cummings (Eds.),The human frontal lobes: Functions and disorders (pp. 3–26). New York: Guilford.Google Scholar
  51. Cicerone, K. D., Lazar, R. M., &Shapiro, W. R. (1983). Effects of frontal lobe lesions on hypothesis sampling during concept formation.Neuropsychologia,21, 513–524.PubMedGoogle Scholar
  52. Cohen, J. D., Braver, T. S., &O’Reilly, R. C. (1996). A computational approach to prefrontal cortex, cognitive control and schizophrenia: Recent developments and current challenges.Philosophical Transactions of the Royal Society of London: Series B,351, 1515–1527.Google Scholar
  53. Cohen, J. D., Braver, T. S., &O’Reilly, R. C. (1998). A computational approach to prefrontal cortex, cognitive control and schizophrenia: Recent developments and current challenges. In A. C. Roberts, T. W. Robbins, & L. Weiskrantz (Eds.),The prefrontal cortex: Executive and cognitive functions (pp. 195–220). Oxford: Oxford University Press.Google Scholar
  54. Cohen, J. D., Dunbar, K., &McClelland, J. L. (1990). On the control of automatic processes: A parallel distributed processing account of the Stroop effect.Psychological Review,97, 332–361.PubMedGoogle Scholar
  55. Cohen, J. D., Forman, S. D., Braver, T. S., Casey, B. J., Servan-Schreiber, D., &Noll, D. C. (1994). Activation of the prefrontal cortex in a nonspatial working memory task with functional MRI.Human Brain Mapping,1, 293–304.Google Scholar
  56. Cohen, J. D., Perlstein, W. M., Braver, T. S., Nyström, L. E., Noll, D. C., Jonides, J., &Smith, E. E. (1997). Temporal dynamics of brain activation during a working memory task.Nature,386, 604–608.PubMedGoogle Scholar
  57. Cohen, J. D., &Servan-Schreiber, D. (1992). Context, cortex, and dopamine: A connectionist approach to behavior and biology in schizophrenia.Psychological Review,99, 45–77.PubMedGoogle Scholar
  58. Constantinidis, C., &Steinmetz, M. A. (1996). Neuronal activity in posterior parietal area 7a during the delay periods of a spatial memory task.Journal of Neurophysiology,76, 1352–1355.PubMedGoogle Scholar
  59. Conway, A. R. A., Cowan, N., &Bunting, M. F. (2001). The cocktail party phenomenon revisited: The importance of working memory capacity.Psychonomic Bulletin & Review,8, 331–335.Google Scholar
  60. Conway, A. R. A., Cowan, N., Bunting, M. F., Therriault, D., &Minkoff, S. (2002). A latent variable analysis of working memory capacity, short term memory capacity, processing speed, and general fluid intelligence.Intelligence,30, 163–183.Google Scholar
  61. Conway, A. R. A., &Engle, R. W. (1994). Working memory and retrieval: A resource-dependent inhibition model.Journal of Experimental Psychology: General,123, 354–373.Google Scholar
  62. Conway, A. R. A., &Engle, R. W. (1996). Individual differences in working memory capacity: More evidence for a general capacity theory.Memory,4, 577–590.PubMedGoogle Scholar
  63. Conway, A. R. A., &Kane, M. J. (2001). Capacity, control and conflict: An individual differences perspective on attentional capture. In C. Folk & B. Gibson (Eds.),Attraction, distraction and action: Multiple perspectives on attention capture (pp. 349–372). Amsterdam: Elsevier.Google Scholar
  64. Conway, A. R. A., Tuholski, S. W., Shisler, R. J., &Engle, R. W. (1999). The effect of memory load on negative priming: An individual differences investigation.Memory & Cognition,27, 1042–1050.Google Scholar
  65. Corbetta, M., Miezin, F. M., Dobmeyer, S., Shulman, G. L., &Peterson, S. E. (1991). Selective and divided attention during visual discriminations of shape, color, and speed: Functional anatomy by positron emission tomography.Journal of Neuroscience,11, 2383–2402.PubMedGoogle Scholar
  66. Corcoran, R., &Upton, D. (1993). A role for the hippocampus in card sorting?Cortex,29, 293–304.PubMedGoogle Scholar
  67. Coslett, H. B., Bowers, D., Verfaellie, M., &Heilman, K. M. (1991). Frontal verbal amnesia: Phonological amnesia.Archives of Neurology,48, 949–955.PubMedGoogle Scholar
  68. Courtney, S. M., Petit, L., Maisog, J. M., Ungerleider, L. G., &Haxby, J. V. (1998). An area specialized for spatial working memory in human frontal cortex.Science,279, 1347–1351.PubMedGoogle Scholar
  69. Courtney, S. M., Ungerleider, L. G., Keil, K., &Haxby, J. V. (1996). Object and spatial working memory activate separate neural systems in human cortex.Cerebral Cortex,6, 39–49.PubMedGoogle Scholar
  70. Courtney, S. M., Ungerleider, L. G., Keil, K., &Haxby, J. V. (1997). Transient and sustained activity in a distributed neural system for human working memory.Nature,386, 608–611.PubMedGoogle Scholar
  71. Cowan, N. (1995).Attention and memory: An integrated framework. Oxford: Oxford University Press.Google Scholar
  72. Cowan, N. (1999). An embedded-process model of working memory. In A. Miyake & P. Shah (Eds.),Models of working memory: Mechanisms of active maintenance and executive control (pp. 62–101). New York: Cambridge University Press.Google Scholar
  73. Crawford, J. D., &Stankov, L. (1983). Fluid and crystallized intelligence and primacy/recency components of short-term memory.Intelligence,7, 227–252.Google Scholar
  74. Cuenod, C. A., Bookheimer, S. Y., Hertz-Pannier, L., Zeffiro, T.A., Theodore, W. H., &Le Bihan, D. (1995). Functional MRI during word generation, using conventional equipment: A potential tool for language localization in the clinical environment.Neurology,45, 1821–1827.PubMedGoogle Scholar
  75. Damasio, H. C. (1991). Neuroanatomy of frontal lobe in vivo: A comment on methodology. In H. S. Levin, H. M. Eisenberg, & A. L. Benton (Eds.),Frontal lobe function and dysfunction (pp. 92–121). Oxford: Oxford University Press.Google Scholar
  76. D’Amato, M. R., &O’Neill, W. (1971). Effect of delay-interval illumination on matching behavior in the capuchin monkey.Journal of the Experimental Analysis of Behavior,15, 327–333.PubMedGoogle Scholar
  77. Daneman, M., &Carpenter, P. A. (1980).Individual differences in working memory and reading.Journal of Verbal Learning & Verbal Behavior,19, 450–466.Google Scholar
  78. Daneman, M., &Merikle, P. M. (1996). Working memory and language comprehension: A meta-analysis.Psychonomic Bulletin & Review,3, 422–433.Google Scholar
  79. Daneman, M., &Tardif, T. (1987). Working memory and reading skill reexamined. In M. Coltheart (Ed.),Attention and performance XII: The psychology of reading (pp. 491–508). Hove, U.K.: Erlbaum.Google Scholar
  80. Dehaene, S., &Changeux, J. P. (1989). A simple model of prefrontal cortex function in delayed-response tasks.Journal of Cognitive Neuroscience,1, 244–261.Google Scholar
  81. De Jong, R. D., Berendsen, E., &Cools, R. (1999). Goal neglect and inhibitory limitations: Dissociable causes of interference effects in conflict situations.Acta Psychologica,101, 379–394.PubMedGoogle Scholar
  82. Delis, D. C., Squire, L. R., Bihrle, A., &Massman, P. (1992). Componential analysis of problem-solving ability: Performance of patients with frontal lobe damage and amnesic patients on a new sorting test.Neuropsychologia,30, 683–697.PubMedGoogle Scholar
  83. Dempster, F. N. (1991). Inhibitory processes: A neglected dimension in intelligence.Intelligence,15, 157–173.Google Scholar
  84. Dempster, F. N. (1992). The rise and fall of the inhibitory mechanism: Toward a unified theory of cognitive development and aging.Developmental Review,12, 45–75.Google Scholar
  85. Dempster, F. N., &Corkill, A. J. (1999). Individual differences in susceptibility to interference and general cognitive ability.Acta Psychologica,101, 395–416.Google Scholar
  86. Desimone, R., &Duncan, J. (1995). Neural mechanisms of selective visual attention.Annual Review of Neuroscience,18, 193–222.PubMedGoogle Scholar
  87. D’Esposito, M., Aguirre, G. K., Zarahn, E. K., Ballard, D., Shin, R. K., &Lease, J. (1998). Functional MRI studies of spatial and nonspatial working memory.Cognitive Brain Research,7, 1–13.PubMedGoogle Scholar
  88. D’Esposito, M., Ballard, D., Aguirre, G. K., &Zarahn, E. (1998). Human prefrontal cortex is not specific for working memory: A functional MRI study.NeuroImage,8, 274–282.PubMedGoogle Scholar
  89. D’Esposito, M., Ballard, D., Zarahn, E., &Aguirre, G. K. (2000). The role of prefrontal cortex in sensory memory and motor preparation: An event-related fMRI study.NeuroImage,11, 400–408.PubMedGoogle Scholar
  90. D’Esposito, M., Detre, J. A., Alsop, D. C., Shin, R. K., Atlas, S., &Grossman, M. (1995). The neural basis of the central executive system of working memory.Nature,378, 279–281.PubMedGoogle Scholar
  91. D’Esposito, M., Postle, B. R., Ballard, D., &Lease, J. (1999). Maintenance versus manipulation of information held in working memory: An event-related fMRI study.Brain & Cognition,41, 66–86.Google Scholar
  92. D’Esposito, M., Postle, B. R., Jonides, J., &Smith, E. E. (1999). The neural substrate and temporal dynamics of interference effects in working memory as revealed by event-related functional MRI.Proceedings of the National Academy of Sciences,96, 7514–7519.Google Scholar
  93. Diamond, A. (1990). Developmental time course in human infants and infant monkeys, and the neural bases of, inhibitory control of reaching. In A. Diamond (Ed.),The development and neural bases of higher cognitive functions (Annals of the New York Academy of Sciences, Vol. 608, pp. 637–676). New York: New York Academy of Sciences.Google Scholar
  94. Diamond, A. (1991). Frontal lobe involvement in cognitive changes during the first year of life. In K. R. Gibson & A. C. Peterson (Eds.),Brain maturation and cognitive development: Comparative and cross-cultural perspectives (pp. 127–180). New York: de Gruyter.Google Scholar
  95. Dias, R., Robbins, T. W., &Roberts, A. C. (1996a). Dissociation in prefrontal cortex of affective and attentional shifts.Nature,380, 69–72.PubMedGoogle Scholar
  96. Dias, R., Robbins, T. W., &Roberts, A. C. (1996b). Primate analogue of the Wisconsin Card Sorting Test: Effects of excitotoxic lesions of the prefrontal cortex in the marmoset.Behavioral Neuroscience,110, 872–886.PubMedGoogle Scholar
  97. Dias, R., Robbins, T. W., &Roberts, A. C. (1997). Dissociable forms of inhibitory control within prefrontal cortex with an analog of the Wisconsin Card Sort Test: Restriction to novel situations and independence from “on-line” processing.Journal of Neuroscience,17, 9285–9297.PubMedGoogle Scholar
  98. di Pellegrino, G., &Wise, S. P. (1993a). Effects of attention on visuomotor activity in the premotor and prefrontal cortex of a primate.Somatosensory & Motor Research,10, 245–262.Google Scholar
  99. di Pellegrino, G., &Wise, S. P. (1993b). Visuospatial versus visuomotor activity in the premotor and prefrontal cortex of a primate.Journal of Neuroscience,13, 1227–1243.PubMedGoogle Scholar
  100. Diwadkar, V. A., Carpenter, P. A., &Just, M. A. (2000). Collaborative activity between parietal and dorso-lateral prefrontal cortex in dynamic spatial working memory revealed by fMRI.NeuroImage,12, 85–99.PubMedGoogle Scholar
  101. Dolan, R. J., &Fletcher, P. C. (1997). Dissociating prefrontal and hippocampal function in episodic memory encoding.Nature,388, 582–585.PubMedGoogle Scholar
  102. Dove, A., Pollmann, S., Schubert, T., Wiggins, C. J., &von Cramon, D. Y. (2000). Prefrontal cortex activation in task switching: An event-related fMRI study.Cognitive Brain Research,9, 103–109.PubMedGoogle Scholar
  103. Drewe, E. A. (1974). The effect of type and area of brain lesion on Wisconsin Card Sorting Test performance.Cortex,10, 159–170.PubMedGoogle Scholar
  104. Dubois, B., Levy, R., Verin, M., Teixeira, C., Agid, Y., &Pillon, B. (1995). Experimental approach to prefrontal functions in humans.Annals of the New York Academy of Sciences,769, 41–60.PubMedGoogle Scholar
  105. Dunbar, K., &Sussman, D. (1995). Toward a cognitive account of frontal lobe function: Simulating frontal lobe deficits in normal subjects. In J. Grafman, K. J. Holyoak, & F. Butler (Eds.),Structure and functions of the human prefrontal cortex (Annals of the New York Academy of Sciences, Vol. 769, pp. 289–304). New York: New York Academy of Sciences.Google Scholar
  106. Duncan, J. (1990). Goal weighting and the choice of behavior in a complex world.Ergonomics,33, 1265–1279.Google Scholar
  107. Duncan, J. (1993). Selection of input and goal in the control of behavior. In A. Baddeley & L. Weiskrantz (Eds.),Attention: Selection, awareness, and control. A tribute to Donald Broadbent (pp. 53–71). Oxford: Oxford University Press, Clarendon Press.Google Scholar
  108. Duncan, J. (1995). Attention, intelligence, and the frontal lobes. In M. S. Gazzaniga (Ed.),The cognitive neurosciences (pp. 721–733). Cambridge, MA: MIT Press.Google Scholar
  109. Duncan, J., Burgess, P., &Emslie, H. (1995). Fluid intelligence after frontal lobe lesions.Neuropsychologia,33, 261–268.PubMedGoogle Scholar
  110. Duncan, J., Emslie, H., Williams, P., Johnson, R., &Freer, C. (1996). Intelligence and the frontal lobe: The organization of goal-directed behavior.Cognitive Psychology,30, 257–303.PubMedGoogle Scholar
  111. Duncan, J., Johnson, R., Swales, M., &Freer, C. (1997). Frontal lobe deficits after head injury: Unity and diversity of function.Cognitive Neuropsychology,14, 713–741.Google Scholar
  112. Duncan, J., Seitz, R. J., Kolodny, J., Bor, D., Herzog, H., Ahmed,A., Newell, F. N., &Emslie, H. (2000). A neural basis for general intelligence.Science,289, 457–460.PubMedGoogle Scholar
  113. Dupont, P., Orban, G. A., Vogels, R., Bormans, G., Nuyts, J., Schiepers, C., De Roo, M., &Mortelmans, L. (1993). Different perceptual tasks performed with the same visual stimulus attribute activate different regions of the human brain: A positron emission tomography study.Proceedings of the National Academy of Sciences,90, 10927–10931.Google Scholar
  114. Ekstrom, R. B., French, J. W., Harman, M. H., &Dermen, D. (1976).Manual for kit of factor-referenced cognitive tests. Princeton, NJ: Educational Testing Service.Google Scholar
  115. Elfgren, C. I., &Risberg, J. (1998). Lateralized frontal blood flow increases during fluency tasks: Influence of cognitive strategy.Neuropsychologia,36, 505–512.PubMedGoogle Scholar
  116. Engle, R. W. (1996). Working memory and retrieval: An inhibitionresource approach. In J. T. E. Richardson, R. W. Engle, L. Hasher, R. H. Logie, E. R. Stoltzfus, & R. T. Zacks (Eds.),Working memory and human cognition (pp. 89–119). New York: Oxford University Press.Google Scholar
  117. Engle, R. W. (2001). What is working memory capacity? In H. L. Roediger III, J. S. Nairne, I. Neath, & A. M. Surprenant (Eds.),The nature of remembering: Essays in honor of Robert G. Crowder (pp. 297–314). Washington, DC: American Psychological Association.Google Scholar
  118. Engle, R. W. (2002). Working memory capacity as executive attention.Current Directions in Psychological Science,11, 19–23.Google Scholar
  119. Engle, R. W., Cantor, J., &Carullo, J. J. (1992). Individual differences in working memory and comprehension: A test of four hypotheses.Journal of Experimental Psychology: Learning, Memory, & Cognition,18, 972–992.Google Scholar
  120. Engle, R. W., Kane, M. J., &Tuholski, S. W. (1999). Individual differences in working memory capacity and what they tell us about controlled attention, general fluid intelligence and functions of the prefrontal cortex. In A. Miyake & P. Shah (Eds.),Models of working memory: Mechanisms of active maintenance and executive control (pp. 102–134). New York: Cambridge University Press.Google Scholar
  121. Engle, R. W., Nations, J. K., &Cantor, J. (1990). Is “working memory capacity” just another name for word knowledge?Journal of Educational Psychology,82, 799–804.Google Scholar
  122. Engle, R. W., &Oransky, N. (1999). The evolution from short-term to working memory: Multi-store to dynamic models of temporary storage. In R. J. Sternberg (Ed.),The concept of cognition (pp. 515–555). Cambridge, MA: MIT Press.Google Scholar
  123. Engle, R. W., Tuholski, S. W., Laughlin, J. E., &Conway, A. R. A. (1999). Working memory, short-term memory and general fluid intelligence: A latent variable approach.Journal of Experimental Psychology: General,128, 309–331.Google Scholar
  124. Erickson, R. P. (1974). Parallel “population” neural coding in feature extraction. In F. O. Schmitt & F. G. Worden (Eds.),The neurosciences: Third study program (pp. 155–169). Cambridge, MA: MIT Press.Google Scholar
  125. Eriksen, B. A., &Eriksen, C. W. (1974). Effects of noise letters upon the identification of a target letter in a nonsearch task.Perception & Psychophysics,16, 143–149.Google Scholar
  126. Eslinger, P. J., &Damasio, A. R. (1985). Severe disturbance of higher cognition after bilateral frontal lobe ablation: Patient EVR.Neurology,35, 1731–1741.PubMedGoogle Scholar
  127. Esposito, G., Kirkby, B. S., Van Horn, J. D., Ellmore, T. M., &Berman, K. F. (1999). Context-dependent, neural system-specif ic neurophysiological concomitants of ageing: Mapping PET correlates during cognitive activation.Brain,122, 963–979.PubMedGoogle Scholar
  128. Everling, S., &Fischer, B. (1998). The antisaccade: A review of basic research and clinical findings.Neuropsychologia,36, 885–899.PubMedGoogle Scholar
  129. Ferreira, C. T., Verin, M., Pillon, B., Levy, R., Dubois, B., &Agid,Y. (1998). Spatio-temporal working memory and frontal lesions in man.Cortex,34, 83–98.PubMedGoogle Scholar
  130. Ferrier, D. (1886).The functions of the brain (2nd ed.). London: Smith, Elder.Google Scholar
  131. Fiez, J. A., Raife, E. A., Balota, D. A., Schwarz, J. P., Raichle, M.E., &Peterson, S. E. (1996). A positron emission tomography study of the short-term maintenance of verbal information.Journal of Neuroscience,16, 808–822.PubMedGoogle Scholar
  132. Fletcher, P. C., Shallice, T., &Dolan, R. J. (1998). The functional roles of prefrontal cortex in episodic memory.Brain,121, 1239–1248.PubMedGoogle Scholar
  133. Freedman, M., &Cermak, L. S. (1986). Semantic encoding deficits in frontal lobe disease and amnesia.Brain & Cognition,5, 108–114.Google Scholar
  134. Freedman, M., &Oscar-Berman, M. (1986). Bilateral frontal lobe disease and selective delayed response deficits in humans.Behavioral Neuroscience,100, 337–342.PubMedGoogle Scholar
  135. Friedman, H. R., &Goldman-Rakic, P. S. (1988). Activation of the hippocampus and dentate gyrus by working memory: A 2-deoxyglucose study of behaving rhesus monkeys.Journal of Neuroscience,8, 4693–4706.PubMedGoogle Scholar
  136. Frisk, V., &Milner, B. (1990). The relationship of working memory to the immediate recall of stories following unilateral temporal or frontal lobectomy. Neuropsychologia, 28, 121–135.PubMedGoogle Scholar
  137. Frith, C. D., Friston, K. J., Liddle, P. F., &Frackowiak, R. S. J. (1991). A PET study of word finding.Neuropsychologia,29, 1137–1148.PubMedGoogle Scholar
  138. Fukushima, J., Fukushima, K., Miyasaka, K., &Yamashita, I. (1994). Voluntary control of saccadic eye movement in patients with frontal cortical lesions and Parkinsonian patients in comparison with that in schizophrenics.Biological Psychiatry,36, 21–30.PubMedGoogle Scholar
  139. Funahashi, S., Bruce, C. J., &Goldman-Rakic, P. S. (1989). Mnemonic coding of visual space in the monkey’s dorsolateral prefrontal cortex.Journal of Neurophysiology,61, 331–349.PubMedGoogle Scholar
  140. Funahashi, S., Bruce, C. J., &Goldman-Rakic, P. S. (1990). Visuospatial coding in primate prefrontal neurons revealed by oculomotor paradigms.Journal of Neurophysiology,63, 814–831.PubMedGoogle Scholar
  141. Funahashi, S., Bruce, C. J., &Goldman-Rakic, P. S. (1993). Dorsolateral prefrontal lesions and oculomotor delayed-response performance: Evidence for mnemonic “scotomas.”Journal of Neuroscience,13, 1479–1497.PubMedGoogle Scholar
  142. Funahashi, S., &Kubota, K. (1994). Working memory and prefrontal cortex.Neuroscience Research,21, 1–11.PubMedGoogle Scholar
  143. Fuster, J. M. (1973). Unit activity in prefrontal cortex during delayedresponse performance: Neuronal correlates of transient memory.Journal of Neurophysiology,36, 61–78.PubMedGoogle Scholar
  144. Fuster, J. M. (1980).The prefrontal cortex. New York: Raven.Google Scholar
  145. Fuster, J. M. (1988). The prefrontal cortex:Anatomy, physiology, and neuropsychology of the frontal lobe. New York: Raven.Google Scholar
  146. Fuster, J. M. (1989).The prefrontal cortex (2nd ed.). New York: Raven.Google Scholar
  147. Fuster, J. M. (1996, July).Emerging solutions to the problem of the frontal lobe. Paper presented at the James S. McDonnell Foundation Summer Institute in Cognitive Neuroscience, Hanover, NH.Google Scholar
  148. Fuster, J. M., &Alexander, G. E. (1973). Firing changes in cells of the nucleus medialis dorsalis associated with delayed response behavior.Brain Research,61, 79–91.PubMedGoogle Scholar
  149. Fuster, J. M., &Bauer, R. H. (1974). Visual short-term memory deficit from hypothermia of frontal cortex.Brain Research,81, 393–400.PubMedGoogle Scholar
  150. Fuster, J. M., Bauer, R. H., &Jervey, J. P. (1985). Functional interactions between inferotemporal and prefrontal cortex in a cognitive task.Brain Research,330, 299–307.PubMedGoogle Scholar
  151. Fuster, J. M., Bodner, M., &Kroger, J. (2000). Cross-modal and cross-temporal association in neurons of frontal cortex.Nature,405, 347–351.PubMedGoogle Scholar
  152. Goel, V., Buchel, C., Frith, C., &Dolan, R. J. (2000). Dissociation of mechanisms underlying syllogistic reasoning.NeuroImage,12, 504–514.PubMedGoogle Scholar
  153. Goel, V., Gold, B., Kapur, S., &Houle, S. (1997). The seats of reason? An imaging study of deductive and inductive reasoning.NeuroReport,8, 1305–1310.PubMedGoogle Scholar
  154. Goel, V., Gold, B., Kapur, S., &Houle, S. (1998). Neuroanatomical correlates of human reasoning.Journal of Cognitive Neuroscience,10, 293–302.PubMedGoogle Scholar
  155. Gold, J. M., Berman, K. F., Randolph, C., Goldberg, T. E., &Weinberger, D. R. (1996). PET validation of a novel prefrontal task: Delayed response alternation.Neuropsychology,10, 3–10.Google Scholar
  156. Goldberg, T. E., Berman, K. F., Fleming, K., Ostrem, J., Van Horn, J. D., Esposito, G., Mattay, V. S., Gold, J. M., &Weinberger, D.R. (1998). Uncoupling cognitive workload and prefrontal cortical physiology: A PET rCBF study.NeuroImage,7, 296–303.PubMedGoogle Scholar
  157. Goldberg, T. E., Berman, K. F., Randolph, C., Gold, J. M., &Weinberger, D. R. (1996). Isolating the mnemonic component in spatial delayed response: A controlled PET O15-labeled water regional cerebral blood flow study in normal humans.NeuroImage,3, 69–78.PubMedGoogle Scholar
  158. Goldman, P. S., &Rosvold, H. E. (1970). Localization of function within the dorsolateral prefrontal cortex of the rhesus monkey.Experimental Neurology,27, 291–304.PubMedGoogle Scholar
  159. Goldman, P. S., Rosvold, H. E., Vest, B., &Galkin, T. W. (1971). Analysis of the delayed-alternation deficit produced by dorsolateral prefrontal lesions in the rhesus monkey.Journal of Comparative & Physiological Psychology,77, 212–220.Google Scholar
  160. Goldman-Rakic, P. S. (1987). Circuitry of primate prefrontal cortex and regulation of behavior by representational memory. In F. Plum (Ed.),Handbook of physiology: The nervous system (Vol. 5, pp. 373–417). Bethesda, MD: American Physiological Society.Google Scholar
  161. Goldman-Rakic, P. S. (1995). Cellular basis of working memory.Neuron,14, 477–485.PubMedGoogle Scholar
  162. Goldman-Rakic, P. S. (2000). Localization of function all over again.NeuroImage,11, 451–457.PubMedGoogle Scholar
  163. Goldstein, K. (1936). The significance of the frontal lobes for mental performance.Journal of Neurology & Psychopathology,17, 27–40.Google Scholar
  164. Goldstein, K. (1944). The mental changes due to frontal lobe damage.Journal of Psychology,17, 187–208.Google Scholar
  165. Gopher, D., Armony, L., &Greenshpan, Y. (2000). Switching tasks and attention policies.Journal of Experimental Psychology: General,129, 308–339.Google Scholar
  166. Grady, C. L., McIntosh, A. R., Bookstein, F., Horwitz, B., Rapoport, S. I., &Haxby, J. V. (1998). Age-related changes in regional cerebral blood flow during working memory for faces.NeuroImage,8, 409–425.PubMedGoogle Scholar
  167. Grafman, J., Jonas, B., &Salazar, A. (1990). Wisconsin Card Sorting Test performance based on location and size of neuroanatomical lesion in Vietnam veterans with penetrating head injury.Perceptual & Motor Skills,71, 1120–1122.Google Scholar
  168. Grant, A. D., &Berg, E. A. (1948). A behavioral analysis of degree of reinforcement and ease of shifting to new responses in a Weigltype card-sorting problem.Journal of Experimental Psychology,38, 404–411.PubMedGoogle Scholar
  169. Grueninger, W. E., &Pribram, K. H. (1969). Effects of spatial and nonspatial distractors on performance latency of monkeys with frontal lesions.Journal of Comparative & Physiological Psychology,68, 203–209.Google Scholar
  170. Guitton, D., Buchtel, H. A., &Douglas, R. M. (1985). Frontal lobe lesions in man cause difficulties in suppressing reflexive glances and in generating goal-directed saccades.Experimental Brain Research,58, 455–472.Google Scholar
  171. Halstead, W. C. (1947).Brain and intelligence: A quantitative study of the frontal lobes. Chicago: University of Chicago Press.Google Scholar
  172. Harlow, H. F., &Dagnon, J. (1943). Problem solution by monkeys following bilateral removal of the prefrontal areas: I. The discrimination and discrimination-reversal problems.Journal of Experimental Psychology,32, 351–356.Google Scholar
  173. Harlow, H. F., Davis, R. T., Settlage, P. H., &Meyer, D. R. (1952). Analysis of frontal and posterior association syndromes in braindamaged monkeys.Journal of Comparative & Physiological Psychology,45, 419–429.Google Scholar
  174. Harlow, H. F., &Settlage, P. H. (1948). Effect of extirpation of frontal areas upon learning performance of monkeys.Research Publications for Research in Nervous & Mental Disease,27, 446–459.Google Scholar
  175. Harlow, J. M. (1848). Passage of an iron bar through the head.Publications of the Massachusetts Medical Society,2, 327–347.Google Scholar
  176. Harper, D. N., &White, K. G. (1997). Retroactive interference and rate of forgetting in delayed matching-to-sample performance.Animal Learning & Behavior,25, 158–164.Google Scholar
  177. Hartley, A. A., Speer, N. K., Jonides, J., Reuter-Lorenz, P. A., &Smith, E. E. (2001). Is the dissociability of working memory systems for name identity, visual-object identity, and spatial location maintained in old age?Neuropsychology,15, 3–17.PubMedGoogle Scholar
  178. Haxby, J. V., Petit, L., Ungerleider, L. G., &Courtney, S. M. (2000). Distinguishing the functional roles of multiple regions in distributed neural systems for visual working memory.NeuroImage,11, 98–110.Google Scholar
  179. Haxby, J. V., Ungerleider, L. G., Horwitz, B., Rapoport, S. I., &Grady, C. L. (1995). Hemispheric differences in neural systems for face working memory: A PET rCBF study.Human Brain Mapping,3, 68–82.Google Scholar
  180. Heaton, R. (1981).A manual for the Wisconsin Card Sorting Test. Odessa, FL: Psychological Assessment Resources.Google Scholar
  181. Hebb, D. O. (1939). Intelligence in man after large removals of cerebral tissue: Report of four left frontal lobe cases.Journal of General Psychology,21, 73–87.Google Scholar
  182. Hebb, D. O. (1945). Man’s frontal lobes: A critical review.Archives of Neurology & Psychiatry,54, 10–24.Google Scholar
  183. Hebb, D. O., &Penfield, W. (1940). Human behavior after extensive bilateral removal from the frontal lobes.Archives of Neurology & Psychiatry,44, 421–438.Google Scholar
  184. Honey, G. D., Bullmore, E. T., &Sharma, T. (2000). Prolonged reaction time to a verbal working memory task predicts increased power of posterior parietal cortical activation.NeuroImage,12, 495–503.PubMedGoogle Scholar
  185. Iidaka, T., Anderson, N. D., Kapur, S., Cabeza, R., &Craik, F. I. M. (2000). The effect of divided attention on encoding and retrieval in episodic memory revealed by Positron Emission Tomography.Journal of Cognitive Neuroscience,12, 267–280.PubMedGoogle Scholar
  186. Institute for Personality and Ability Testing (1973).Measuring intelligence with culture fair tests. Champaign, IL: Author.Google Scholar
  187. Jacobsen, C. F. (1935). Functions of the frontal association area in primates.Archives of Neurology & Psychiatry,33, 558–569.Google Scholar
  188. Jacobsen, C. F. (1936). Studies of cerebral function in primates: I. The functions of the frontal association area in monkeys.Comparative Psychology Monographs,13, 1–68.Google Scholar
  189. Janowsky, J. S., Shimamura, A. P., Kritchevsky, M., &Squire, L.R. (1989). Cognitive impairment following frontal lobe damage and its relevance to human amnesia.Behavioral Neuroscience,103, 548–560.PubMedGoogle Scholar
  190. Janowsky, J. S., Shimamura, A. P., &Squire, L. R. (1989). Source memory impairment in patients with frontal lobe lesions.Neuropsychologia,27, 1043–1056.PubMedGoogle Scholar
  191. Jansma, J. M., Ramsey, N. F., Coppola, R., &Kahn, R. S. (2000). Specific versus nonspecific brain activity in a parametric n-back task.NeuroImage,12, 688–697.PubMedGoogle Scholar
  192. Jersild, A. T. (1927). Mental set and shift.Archives of Psychology [Whole No. 89].Google Scholar
  193. Jetter, W., Poser, U., Freeman, R. B., Jr., &Markowitsch, H. J. (1986). A verbal long term memory deficit in frontal lobe damaged patients.Cortex,22, 229–242.PubMedGoogle Scholar
  194. Jha, A. P., &McCarthy, G. (2000). The influence of memory load upon delay-interval activity in a working-memory task: An event-related functional MRI study.Journal of Cognitive Neuroscience,12(Suppl.), 90–105.PubMedGoogle Scholar
  195. Joanette, Y., &Goulet, P. (1986). Criterion-specific reduction of verbal fluency in right brain-damaged right-handers.Neuropsychologia,24, 875–879.PubMedGoogle Scholar
  196. Johannsen, P., Jakobsen, J., Bruhn, P., Hansen, S. B., Gee, A., Stødkilde-Jørgensen, H., &Gjedde, A. (1997). Cortical sites of sustained and divided attention in normal elderly humans.Neuro-Image,6, 145–155.PubMedGoogle Scholar
  197. Jones-Gotman, M., &Milner, B. (1977). Design fluency: The invention of nonsense drawings after focal cortical lesions.Neuropsychologia,15, 653–674.PubMedGoogle Scholar
  198. Jonides, J., Marshuetz, C., Smith, E. E., Reuter-Lorenz, P. A., &Koeppe, R. A. (2000). Age differences in behavior and PET activation reveal differences in interference resolution in verbal working memory.Journal of Cognitive Neuroscience,12, 188–196.PubMedGoogle Scholar
  199. Jonides, J., Reuter-Lorenz, P. A., Smith, E. E., Awh, E., Barnes, L. L., Drain, M., Glass, J., Lauber, E. J., Patalano, A. L., &Schumacher, E. H. (1996). Verbal and spatial working memory in humans.Psychology of Learning & Motivation,35, 43–88.Google Scholar
  200. Jonides, J., Schumacher, E. H., Smith, E. E., Lauber, E. J., Awh, E., Minoshima, S., &Koeppe, R. A. (1997). Verbal working memory load affects regional brain activation as measured by PET.Journal of Cognitive Neuroscience,9, 462–475.Google Scholar
  201. Jonides, J., Smith, E. E., Koeppe, R. A., Awh, E., Minoshima, S., &Mintun, M. A. (1993). Spatial working memory in humans as revealed by PET.Nature,363, 623–625.PubMedGoogle Scholar
  202. Jonides, J., Smith, E. E., Marshuetz, C., &Koeppe, R. A. (1998). Inhibition in verbal-working memory revealed by brain activation.Proceedings of the National Academy of Sciences,95, 8410–8413.Google Scholar
  203. Jurden, F. H. (1995). Individual differences in working memory and complex cognition.Journal of Educational Psychology,87, 93–102.Google Scholar
  204. Kahneman, D., Ben-Ishai, R., &Lotan, M. (1973). Relation of a test of attention to road accidents.Journal of Applied Psychology,58, 113–115.Google Scholar
  205. Kail, R., &Hall, L. K. (2001). Distinguishing short-term memory from working memory.Memory & Cognition,29, 1–9.Google Scholar
  206. Kane, M. J., Bleckley, M. K., Conway, A. R. A., &Engle, R. W. (2001). A controlled-attention view of working-memory capacity.Journal of Experimental Psychology: General,130, 169–183.Google Scholar
  207. Kane, M. J., &Engle, R. W. (2000). Working memory capacity, proactive interference, and divided attention: Limits on long-term memory retrieval.Journal of Experimental Psychology: Learning, Memory, & Cognition,26, 333–358.Google Scholar
  208. Kane, M. J., & Engle, R. W. (in press). Working-memory capacity and the control of attention: The contributions of goal neglect, response competition, and task set to Stroop interference.Journal of Experimental Psychology: General.Google Scholar
  209. Kane, M. J., Peterman, M., Bleckley, M. K., & Engle, R. W. (2002).The attentional and intellectual demands of verbal and figural fluency: A dual-task approach. Unpublished manuscript.Google Scholar
  210. Kane, M. J., Sanchez, A., & Engle, R. W. (1999, November).Working memory capacity, intelligence, and goal neglect in the Stroop task. Poster presented at the annual meeting of the Psychonomic Society, Los Angeles.Google Scholar
  211. Kikuchi-Yorioka, Y., &Sawaguchi, T. (2000). Parallel visuospatial and audiospatial working memory processes in the monkey dorsolateral prefrontal cortex.Nature Neuroscience,3, 1075–1076.PubMedGoogle Scholar
  212. Kimberg, D. Y., Aguirre, G. K., &D’Esposito, M. (2000). Modulation of task-related neural activity in task-switching: An fMRI study.Cognitive Brain Research,10, 189–196.PubMedGoogle Scholar
  213. Kimberg, D. Y., D’Esposito, M., &Farah, J. (1997). Effects of bromocriptine on human subjects depend on working memory capacity.Cognitive Neuroscience,8, 3581–3585.Google Scholar
  214. Kimberg, D. Y., &Farah, M. J. (1993). A unified account of cognitive impairments following frontal lobe damage: The role of working memory in complex, organized behavior.Journal of Experimental Psychology: General,4, 411–428.Google Scholar
  215. Kindt, M., Bierman, D., &Brosschot, J. F. (1996). Stroop versus Stroop: Comparison of a card format and a single-trial format of the standard color-word Stroop task and the emotional Stroop task.Personality & Individual Differences,21, 653–661.Google Scholar
  216. Kirchner, W. K. (1958). Age differences in short-term retention of rapidly changing information.Journal of Experimental Psychology,55, 352–358.PubMedGoogle Scholar
  217. Klein, K., &Fiss, W. H. (1999). The reliability and stability of the Turner and Engle working memory task.Behavior Research Methods, Instruments, & Computers,31, 429–432.Google Scholar
  218. Klingberg, T. (1998). Concurrent performance of two working memory tasks: Potential mechanisms of interference.Cerebral Cortex,8, 593–601.PubMedGoogle Scholar
  219. Knight, R. T. (1991). Evoked potential studies of attention capacity in human frontal lobe lesions. In H. S. Levin, H. M. Eisenberg, & A. L. Benton (Eds.),Frontal lobe function and dysfunction (pp. 139–153). Oxford: Oxford University Press.Google Scholar
  220. Knight, R. T., &Grabowecky, M. (1995). Escape from linear time: Prefrontal cortex and conscious experience. In M. S. Gazzaniga (Ed.),The cognitive neurosciences (pp. 1357–1371). Cambridge, MA: MIT Press.Google Scholar
  221. Knight, R. T., Hillyard, S. A., Woods, D. L., &Neville, S. J. (1981). The effects of frontal cortex lesions on event-related potentials during auditory selective attention.Electroencephalography & Clinical Neurophysiology,52, 571–582.Google Scholar
  222. Knight, R. T., Scabini, D., &Woods, D. L. (1989). Prefrontal cortex gating of auditory transmission in humans.Brain Research,504, 338–342.PubMedGoogle Scholar
  223. Knight, R. T., Staines, W. R., Swick, D., &Chao, L. L. (1999). Prefrontal cortex regulates inhibition and excitation in distributed neural networks.Acta Psychologica,101, 159–178.PubMedGoogle Scholar
  224. Koch, K. W., &Fuster, J. M. (1989). Unit activity in monkey parietal cortex related to haptic perception and temporary memory.Experimental Brain Research,76, 292–306.Google Scholar
  225. Kojima, S., &Goldman-Rakic, P. S. (1982). Delay-related activity of prefrontal neurons in rhesus monkeys performing delayed response.Brain Research,248, 43–49.PubMedGoogle Scholar
  226. Kojima, S., &Goldman-Rakic, P. S. (1984). Functional analysis of spatially discriminative neurons in prefrontal cortex of rhesus monkey.Brain Research,291, 229–240.PubMedGoogle Scholar
  227. Kubota, K., &Niki, H. (1971). Prefrontal cortical unit activity and delayed alternation performance in monkeys.Journal of Neurophysiology,34, 337–347.PubMedGoogle Scholar
  228. Kubota, K., Tonoike, M., &Mikami, A. (1980). Neuronal activity in the monkey dorsolateral prefrontal cortex during a discrimination task with delay.Brain Research,183, 29–42.PubMedGoogle Scholar
  229. Kyllonen, P. C. (1993). Aptitude testing inspired by information processing: A test of the four-sources model.Journal of General Psychology,120, 375–405.Google Scholar
  230. Kyllonen, P. C. (1996). Is working memory capacity Spearman’s g? In I. Dennis & P. Tapsfield (Eds.),Human abilities: Their nature and measurement (pp. 49–75). Mahwah, NJ: Erlbaum.Google Scholar
  231. Kyllonen, P. C., &Christal, R. E. (1990). Reasoning ability is (little more than) working-memory capacity?!Intelligence,14, 389–433.Google Scholar
  232. Laiacona, M., De Santis, A., Barbaratto, R., Basso, A., Spagnoli,D., &Capitani, E. (1989). Neuropsychological follow-up of patients operated for aneurysms of anterior communicating artery.Cortex,25, 261–273.PubMedGoogle Scholar
  233. Larson, G. E., &Perry, Z. A. (1999). Visual capture and human error.Applied Cognitive Psychology,13, 227–236.Google Scholar
  234. Larson, G. E., &Saccuzzo, D. P. (1989). Cognitive correlates of general intelligence: Toward a process theory ofg.Intelligence,13, 5–31.Google Scholar
  235. Law, D. J., Morrin, K. A., &Pellegrino, J. W. (1995). Training effects and working memory contributions to skill acquisition in a complex coordination task.Learning & Individual Differences,7, 207–234.Google Scholar
  236. Lee, S. L., Wild, K., Hollnagel, C., &Grafman, J. (1999). Selective visual attention in patients with frontal lobe lesions or Parkinson’s disease.Neuropsychologia,37, 595–604.PubMedGoogle Scholar
  237. Lehto, J. (1996). Are executive function tests dependent on working memory capacity?Quarterly Journal of Experimental Psychology,49A, 29–50.Google Scholar
  238. Lezak, M. D. (1983). Neuropsychological assessment. New York: Oxford University Press.Google Scholar
  239. Los, S. A. (1999). Identifying stimuli of different perceptual categories in pure and mixed blocks of trials: Evidence for stimulus-driven switch costs.Acta Psychologica,103, 173–205.PubMedGoogle Scholar
  240. Luciana, M., Depue, R. A., Arbisi, P., &Leon, A. (1992). Facilitation of working memory in humans by a D2 dopamine receptor agonist.Journal of Cognitive Neuroscience,4, 58–68.Google Scholar
  241. Luria, A. R. (1966). Higher cortical functions in man. New York: Basic Books.Google Scholar
  242. Luria, A. R. (1971). Memory disturbances in local brain lesions.Neuropsychologia,9, 367–375.PubMedGoogle Scholar
  243. Luria, A. R., Karpov, B. A., &Yarbuss, A. L. (1966). Disturbances of active visual perception with lesions of the frontal lobes.Cortex,2, 202–212.Google Scholar
  244. Luria, A. R., Pribram, K. H., &Homskaya, E. D. (1964). An experimental analysis of the behavioral disturbance produced by a left frontal arachnoidal endothelioma (meningioma).Neuropsychologia,2, 257–280.Google Scholar
  245. MacDonald, A. W., Cohen, J. D., Stenger, V. A., &Carter, C. S. (2000). Dissociating the role of the dorsolateral prefrontal and anterior cingulate cortex in cognitive control.Science,288, 1835–1838.PubMedGoogle Scholar
  246. Mackworth, J. F. (1959). Paced memorizing in a continuous task.Journal of Experimental Psychology,58, 206–211.PubMedGoogle Scholar
  247. MacLeod, C. M. (1991). Half a century of research on the Stroop effect: An integrative review.Psychological Bulletin,109, 163–203.PubMedGoogle Scholar
  248. MacLeod, C. M., &MacDonald, P. A. (2000). Interdimensional interference in the Stroop effect: Uncovering the cognitive and neural anatomy of attention.Trends in Cognitive Sciences,4, 383–391.PubMedGoogle Scholar
  249. Malmo, R. B. (1942). Interference factors in delayed response in monkeys after removal of frontal lobes.Journal of Neurophysiology,5, 295–308.Google Scholar
  250. Martinkauppi, S., Rämä, P., Aronen, H. J., Korvenoja, A., &Carlson, S. (2000). Working memory of auditory localization.Cerebral Cortex,10, 889–898.PubMedGoogle Scholar
  251. Mayr, U., &Keele, S. W. (2000). Changing internal constraints on action: The role of backward inhibition.Journal of Experimental Psychology: General,129, 4–26.Google Scholar
  252. McCarthy, G. (1995). Functional neuroimaging of memory.The Neuroscientist,1, 155–163.Google Scholar
  253. McCarthy, G., Blamire, A. M., Puce, A., Nobre, A. C., Bloch, G., Hyder, F., Goldman-Rakic, P. S., &Shulman, R. G. (1994). Functional magnetic resonance imaging of human prefrontal cortex activation during a spatial working memory task.Proceedings of the National Academy of Sciences,91, 8690–8694.Google Scholar
  254. McCarthy, G., Puce, A., Constable, R. T., Krystal, J. H., Gore, J. C., &Goldman-Rakic, P. S. (1996). Activation of human prefrontal cortex during spatial and nonspatial working memory tasks measured by functional MRI.Cerebral Cortex,6, 600–611.PubMedGoogle Scholar
  255. McIntosh, A. R., Grady, C. L., Haxby, J. V., Ungerleider, L. G., &Horwitz, B. (1996). Changes in limbic and prefrontal functional interactions in a working memory task for faces.Cerebral Cortex,6, 571–584.PubMedGoogle Scholar
  256. McKenna, F. P., Duncan, J., &Brown, I. D. (1986). Cognitive abilities and safety on the road: A re-examination of individual differences in dichotic listening and search for embedded figures.Ergonomics,29, 649–663.PubMedGoogle Scholar
  257. Meiran, N. (1996). Reconfiguration of processing mode prior to task performance.Journal of Experimental Psychology: Learning, Memory, & Cognition,22, 1423–1442.Google Scholar
  258. Mesulam, M. M. (1981). A cortical network for directed attention and unilateral neglect.Annals of Neurology,10, 309–325.PubMedGoogle Scholar
  259. Metz, J. T., Yasillo, N. J., &Cooper, M. (1987). Relationship between cognitive functioning and cerebral metabolism.Journal of Cerebral Blood Flow & Metabolism,7(Suppl. 1), S305.Google Scholar
  260. Miceli, G., Caltagirone, C., Gainotti, G., Masullo, C., &Silveri, M. C. (1981). Neuropsychological correlates of localized cerebral lesions in non-aphasic brain-damaged patients.Journal of Clinical Neuropsychology,3, 53–63.PubMedGoogle Scholar
  261. Miller, E. (1984). Verbal fluency as a function of a measure of verbal intelligence and in relation to different types of cerebral pathology.British Journal of Clinical Psychology,23, 53–57.PubMedGoogle Scholar
  262. Miller, E. K. (2000). The prefrontal cortex: No simple matter.Neuro-Image,11, 447–450.PubMedGoogle Scholar
  263. Miller, E. K., &Cohen, J. D. (2001). An integrative theory of prefrontal cortex function.Annual Review of Neuroscience,24, 167–202.PubMedGoogle Scholar
  264. Miller, E. K., &Desimone, R. (1994). Parallel neuronal mechanisms for short-term memory.Science,263, 520–522.PubMedGoogle Scholar
  265. Miller, E. K., Erickson, C. A., &Desimone, R. (1996). Neural mechanisms of visual working memory in prefrontal cortex of the macaque.Journal of Neuroscience,16, 5154–5167.PubMedGoogle Scholar
  266. Miller, E. K., Li, L., &Desimone, R. (1993). Activity of neurons in anterior inferior temporal cortex during a short-term memory task.Journal of Neuroscience,13, 1460–1478.PubMedGoogle Scholar
  267. Miller, G. A. (1956). The magical number seven, plus or minus two: Some limits on our capacity for processing information.Psychological Review,63, 81–97.PubMedGoogle Scholar
  268. Milner, B. (1963). Effects of different brain lesions on card sorting.Archives of Neurology,9, 90–100.Google Scholar
  269. Milner, B. (1964). Some effects of frontal lobectomy in man. In J. M. Warren & K. Akert (Eds.),The frontal granular cortex and behavior (pp. 313–334). New York: McGraw-Hill.Google Scholar
  270. Mishkin, M., &Manning, F. J. (1978). Non-spatial memory after selective prefrontal lesions in monkeys.Brain Research,143, 313–323.PubMedGoogle Scholar
  271. Mishkin, M., &Pribram, K. H. (1955). Analysis of the effects of frontal lesions in monkey: I. Variations of delayed alternation.Journal of Comparative & Physiological Psychology,48, 492–495.Google Scholar
  272. Mishkin, M., &Pribram, K. H. (1956). Analysis of the effects of frontal lesions in monkey: II. Variations of delayed response.Journal of Comparative & Physiological Psychology,49, 36–45.Google Scholar
  273. Mishkin, M., Ungerleider, L. G., &Macko, K. A. (1983). Object vision and spatial vision: Two cortical pathways.Trends in Neurosciences,6, 414–417.Google Scholar
  274. Miyake, A., Friedman, N. P., Emerson, M. J., Witzki, A. H., & Howerter, A. (2000). The unity and diversity of executive functions and their contributions to complex “frontal lobe” tasks: A latent variable analysis.Cognitive Psychology.Google Scholar
  275. Moscovitch, M. (1994). Cognitive resources and dual-task interference effects at retrieval in normal people: The role of the frontal lobes and medial temporal cortex.Neuropsychology,8, 524–534.Google Scholar
  276. Mountain, M. A., &Snow, W. G. (1993). Wisconsin Card Sorting Test as a measure of frontal pathology: A review.The Clinical Neuropsychologist,7, 108–118.Google Scholar
  277. Nagahama, Y., Fukuyama, H., Yamauchi, H., Matsuzaki, S., Konishi, J., Shibasaki, H., &Kimura, J. (1996). Cerebral activation during performance of a card sorting test.Brain,119, 1667–1675.PubMedGoogle Scholar
  278. Nagahama, Y., Okada, T., Katsumi, Y., Hayashi, T., Yamauchi, H., Sawamoto, N., Toma, K., Nakamura, K., Hanakawa, T., Konishi, J., Fuyukama, H., &Shibasaki, H. (1999). Transient neural activity in the medial superior frontal gyrus and precuneus time locked with attention shift between object features.NeuroImage,10, 193–199.PubMedGoogle Scholar
  279. Nagahama, Y., Sadato, N., Yamauchi, H., Katsumi, Y., Hayashi, T., Fukuyama, H., Kimura, J., Shibasaki, H., &Yonekura, Y. (1998). Neural activity during attention shifts between object features.Neuro-Report,9, 2633–2638.Google Scholar
  280. Nauta, W. J. H. (1964). Some efferent connections of the prefrontal cortex in the monkey. In J. M. Warren & K. Akert (Eds.),The frontal granular cortex and behavior (pp. 397–407). New York: McGraw-Hill.Google Scholar
  281. Nauta, W. J. H. (1972). Neural associations of the frontal cortex.Acta Neurobiologiae Experimentalis,32, 125–140.PubMedGoogle Scholar
  282. Nelson, H. E. (1976). A modified card sorting test sensitive to frontal lobe defects.Cortex,12, 313–324.PubMedGoogle Scholar
  283. Newcombe, F. (1969).Missile wounds of the brain: A study of psychological deficits. Oxford: Oxford University Press.Google Scholar
  284. Niki, H. (1974a). Differential activity of prefrontal units during right and left delayed response.Brain Research,70, 346–349.PubMedGoogle Scholar
  285. Niki, H. (1974b). Prefrontal unit activity during delayed alternation in the monkey: I. Relation to the direction of response.Brain Research,68, 185–196.PubMedGoogle Scholar
  286. Niki, H. (1974c). Prefrontal unit activity during delayed alternation in the monkey: II. Relation to absolute versus relative direction of response.Brain Research,68, 197–204.PubMedGoogle Scholar
  287. Niki, H., &Watanabe, M. (1976). Prefrontal unit activity and delayed response: Relation to cue location versus direction of response.Brain Research,105, 79–88.PubMedGoogle Scholar
  288. Norman, D. A., &Shallice, T. (1986). Attention to action: Willed and automatic control of behavior. In R. J. Davidson, G. E. Schwartz, & D. Shapiro (Eds.),Consciousness and self-regulation: Advances in research and theory (Vol. 4, pp. 1–18). New York: Plenum.Google Scholar
  289. Nyström, L. E., Braver, T. S., Sabb, F. W., Delgado, M. R., Noll, D.C., &Cohen, J. D. (2000). Working memory for letters, shapes, and localizations: fMRI evidence against stimulus-based regional organization in human prefrontal cortex.NeuroImage,11, 424–446.PubMedGoogle Scholar
  290. O’Reilly, R. C., Braver, T. S., & Cohen, J. D. (1997, July).A biologically-based computational model of working memory. Paper presented at the Models of Working Memory Symposium, Boulder, CO.Google Scholar
  291. O’Reilly, R. C., Braver, T. S., &Cohen, J. D. (1999). A biologicallybased computational model of working memory. In A. Miyake & P. Shah (Eds.),Models of working memory: Mechanisms of active maintenance and executive control (pp. 375–411). New York: Cambridge University Press.Google Scholar
  292. Oscar-Berman, M. (1975). The effects of dorsolateral-frontal and ventrolateral-frontal lesions on spatial discrimination learning and delayed response in two modalities.Neuropsychologia,13, 237–246.PubMedGoogle Scholar
  293. Owen, A. M. (1997). The functional organization of working memory processes within human lateral frontal cortex: The contribution of functional neuroimaging.European Journal of Neuroscience,9, 1329–1339.PubMedGoogle Scholar
  294. Owen, A. M., Downes, J. J., Sahakian, B. J., Polkey, C. E., &Robbins, T. W. (1990). Planning and spatial working memory following frontal lobe lesions in man.Neuropsychologia,28, 1021–1034.PubMedGoogle Scholar
  295. Owen, A. M., Evans, A. C., &Petrides, M. (1996). Evidence for a two-stage model of spatial working memory processing within the lateral frontal cortex: A positron emission tomography study.Cerebral Cortex,6, 31–38.PubMedGoogle Scholar
  296. Owen, A. M., Roberts, A. C., Hodges, J. R., Summers, B. A., Polkey, C. E., &Robbins, T. W. (1993). Contrasting mechanisms of impaired attentional set-shifting in patients with frontal lobe damage or Parkinson’s disease.Brain,116, 1159–1175.PubMedGoogle Scholar
  297. Owen, A. M., Roberts, A. C., Polkey, C. E., Sahakian, B. J., &Robbins, T. W. (1991). Extra-dimensional versus intra-dimensional set shifting performance following frontal lobe excisions, temporal lobe excisions or amygdalo-hippocampectomy in man.Neuropsychologia,29, 993–1006.PubMedGoogle Scholar
  298. Pandya, D. N., &Barnes, D. L. (1987). Architecture and connections of the frontal lobe. In E. Perecman (Ed.),The frontal lobes revisited (pp. 41–72). New York: IRBN Press.Google Scholar
  299. Pandya, D. N., &Yeterian, E. H. (1990). Prefrontal cortex in relation to other cortical areas in rhesus monkey: Architecture and connections.Progress in Brain Research,85, 63–93.PubMedGoogle Scholar
  300. Pandya, D. N., &Yeterian, E. H. (1999). Comparison of prefrontal architecture and connections. In A. C. Roberts, T. W. Robbins, & L. Weiskrantz (Eds.),The prefrontal cortex: Executive and cognitive functions (pp. 51–66). Oxford: Oxford University Press.Google Scholar
  301. Parasuraman, R. (1998).The attentive brain. Cambridge, MA: MIT Press.Google Scholar
  302. Pardo, J. V., Pardo, P. J., Janer, K. W., &Raichle, M. E. (1990). The anterior cingulate cortex mediates processing selection in the Stroop attentional conflict paradigm.Proceedings of the National Academy of Sciences,87, 256–259.Google Scholar
  303. Parkin, A. J., Bindschaedler, C., Harsent, L., &Metzler, C. (1996). Pathological false alarm rates following damage to the left frontal cortex.Brain & Cognition,32, 14–27.Google Scholar
  304. Parkin, A. J., Leng, N. R. C., &Stanhope, N. (1988). Memory impairment following ruptured aneurysm of the anterior communicating artery.Brain & Cognition,7, 231–243.Google Scholar
  305. Parks, R. W., Loewenstein, D. A., Dodrill, K. L., Barker, W. W., Yoshii, F., Chang, J. Y., Emran, A., Apicella, A., Sheramata, W.A., &Duara, R. (1988). Cerebral metabolic effects of a verbal fluency test: A PET scan study.Journal of Clinical & Experimental Neuropsychology,10, 565–575.Google Scholar
  306. Passingham, R. E. (1975). Delayed matching after selective prefrontal lesions in monkeys.Brain Research,92, 89–102.PubMedGoogle Scholar
  307. Pati, P., &Dash, A. S. (1990). Interrelationships between incidental memory, non-verbal intelligence and Stroop scores.Psycho-Lingua,20, 27–31.Google Scholar
  308. Paus, T., Kalina, M., Patockova, L., Angerova, Y., Cerny, R., Mecir, P., Bauer, J., &Krabec, P. (1991). Medial vs lateral frontal lobe lesions and differential impairment of central-gaze fixation maintenance in man.Brain, 114, 2051–2067.PubMedGoogle Scholar
  309. Pavlov, I. P. (1941).Conditioned reflexes and psychiatry (Vol. 2; W. H. Gantt, Trans.). New York: International Publishers.Google Scholar
  310. Pendleton, M. G., Heaton, R. K., Lehman, R. A., &Hulihan, D. (1982). Diagnostic utility of the Thurstone Word Fluency Test in neuropsychological evaluations.Journal of Clinical Neuropsychology,4, 307–317.PubMedGoogle Scholar
  311. Pennington, B. F. (1994). The working memory function of the prefrontal cortices. In M. M. Haith, J. B. Bensen, R. J. Roberts, & B. F. Pennington (Eds.),The development of future-oriented processes. Chicago: University of Chicago Press.Google Scholar
  312. Perret.E. (1974). The left frontal lobe of man and the suppression of habitual responses in verbal categorical behavior.Neuropsychologia,12, 323–330.PubMedGoogle Scholar
  313. Petrides, M. (1985). Deficits on conditional associative-learning tasks after frontal- and temporal-lobe lesions in man.Neuropsychologia,23, 601–614.PubMedGoogle Scholar
  314. Petrides, M. (1989). Frontal lobes and memory. In F. Boller & J. Grafman (Eds.),Handbook of neuropsychology (Vol. 3, pp. 75–90). Amsterdam: Elsevier.Google Scholar
  315. Petrides, M. (1990). Nonspatial conditional learning impaired in patients with unilateral frontal but not unilateral temporal lobe excisions.Neuropsychologia,28, 137–149.PubMedGoogle Scholar
  316. Petrides, M. (1995). Impairments in non-spatial self-ordered and externally ordered working memory tasks after lesions of the mid-dorsal part of the lateral frontal cortex in the monkey.Journal of Neuroscience,15, 359–375.PubMedGoogle Scholar
  317. Petrides, M., Alivisatos, B., Meyer, E., &Evans, A. C. (1993). Functional activation of the human frontal cortex during the performance of verbal working memory tasks.Proceedings of the National Academy of Sciences,90, 878–882.Google Scholar
  318. Petrides, M., &Milner, B. (1982). Deficits on subject-ordered tasks after frontal- and temporal-lobe lesions in man.Neuropsychologia,20, 249–262.PubMedGoogle Scholar
  319. Petrides, M., &Pandya, D. N. (1994). Comparative architectonic analysis of the human and macaque frontal cortex. In F. Boller & J. Grafman (Eds.),Handbook of neuropsychology (Vol. 9, pp. 17–58). Amsterdam: Elsevier.Google Scholar
  320. Pfefferbaum, A., Desmond, J. E., Galloway, C., Menon, V., Glover, G. H., &Sullivan, E. V. (2001). Reorganization of frontal systems used by alcoholics for spatial working memory: An fMRI study.NeuroImage,14, 7–20.PubMedGoogle Scholar
  321. Phillips, L. H. (1997). Do “frontal tests” measure executive function? Issues of assessment and evidence from fluency tests. In P. Rabbitt (Ed.),Methodology of frontal and executive function (pp. 191–213). Hove, U.K.: Psychology Press.Google Scholar
  322. Phillips, L. H. (1999). Age and individual differences in letter fluency.Developmental Neuropsychology,15, 249–267.Google Scholar
  323. Pierrot-Deseilligny, C., Rivaud, S., Gaymard, B., &Agid, Y. (1991). Cortical control of reflexive visually-guided saccades.Brain,114, 1473–1485.PubMedGoogle Scholar
  324. Pohl, W. (1973). Dissociation of spatial discrimination deficits following frontal and parietal lesions in monkeys.Journal of Comparative & Physiological Psychology,82, 227–239.Google Scholar
  325. Pollmann, S. (2001). Switching between dimensions, locations, and responses: The role of left frontopolar cortex.NeuroImage,14, S118-S124.PubMedGoogle Scholar
  326. Posner, M. I. (1988). Structures and functions of selective attention. In T. Boll & B. Bryant (Eds.),Clinical neuropsychology and brain function: Research, measurement, and practice. Washington, DC: American Psychological Association.Google Scholar
  327. Posner, M. I., &Peterson, S. E. (1990). The attention system of the human brain.Annual Review of Neuroscience,13, 25–42.PubMedGoogle Scholar
  328. Posner, M. I., &Raichle, M. E. (1994).Images of mind. New York: Freeman.Google Scholar
  329. Postle, B. R., Berger, J. S., &D’Esposito, M. (1999). Functional neuroanatomical double dissociation of mnemonic and executive control processes contributing to working memory performance.Proceedings of the National Academy of Sciences,96, 12959–12964.Google Scholar
  330. Postle, B. R., Berger, J. S., Taich, A. M., &D’Esposito, M. (2000). Activity in human frontal cortex associated with spatial working memory and saccadic behavior.Journal of Cognitive Neuroscience, 12(Suppl.), 2–14.PubMedGoogle Scholar
  331. Postle, B. R., &D’Esposito, M. (1999). “What”-then-“where” in visual working memory: An event-related fMRI study.Journal of Cognitive Neuroscience,11, 585–597.PubMedGoogle Scholar
  332. Postle, B. R., &D’Esposito, M. (2000). Evaluating models of the topographical organization of working memory function in frontal cortex with event-related fMRI.Psychobiology,28, 132–145.Google Scholar
  333. Postle, B. R., Stern, C. E., Rosen, B. R., &Corkin, S. (2000). An fMRI investigation of cortical contributions to spatial and nonspatial visual working memory.NeuroImage,11, 409–423.PubMedGoogle Scholar
  334. Prabhakaran, V., Narayanan, K., Zhao, Z., &Gabrieli, J. D. E. (2000). Integration of diverse information in working memory within the frontal lobe.Nature Neuroscience,3, 85–90.PubMedGoogle Scholar
  335. Prabhakaran, V., Rypma, B., &Gabrieli, J. D. E. (2001). Neural substrates of mathematical reasoning: A functional magnetic resonance imaging study of neocortical activation during performance of the Necessary Arithmetic Operations Test.Neuropsychology,15, 115–127.PubMedGoogle Scholar
  336. Prabhakaran, V., Smith, J. A. L., Desmond, J. E., Glover, G. H., &Gabrieli, J. D. E. (1997). Neural substrates of fluid reasoning: An fMRI study of neocortical activation during performance of the Raven’s Progressive Matrices Test.Journal of Cognitive Psychology,33, 43–63.Google Scholar
  337. Pribram, K. H., &Mishkin, M. (1956). Analysis of the effects of frontal lesions in monkey: III. Object alternation.Journal of Comparative & Physiological Psychology,49, 41–45.Google Scholar
  338. Ptito, A., Crane, J., Leonard, G., Amsel, R., &Caramanos, Z. (1995). Visual-spatial localization by patients with frontal-lobe lesions invading or sparing area 46.NeuroReport,6, 1781–1784.PubMedGoogle Scholar
  339. Quintana, J., &Fuster, J. M. (1993). Spatial and temporal factors in the role of prefrontal and parietal cortex in visuomotor integration.Cerebral Cortex,3, 122–132.PubMedGoogle Scholar
  340. Quintana, J., Yajeya, J., &Fuster, J. M. (1988). Prefrontal representation of stimulus attributes during delay tasks: I. Unit activity in cross-temporal integration of sensory and sensory-motor information.Brain Research, 474, 211–222.PubMedGoogle Scholar
  341. Rafal, R., Gershberg, F., Egly, R., Ivry, R., Kingstone, A., &Ro, T. (1996). Response channel activation and the lateral prefrontal cortex.Neuropsychologia,34, 1197–1202.PubMedGoogle Scholar
  342. Ragland, J. D., Gur, R. C., Glahn, D. C., Censits, D. M., Smith, R. J., Lazarev, M. G., Alavi, A., &Gur, R. E. (1998). Frontotemporal cerebral blood flow change during executive and declarative memory tasks with schizophrenia: A positron emission tomography study.Neuropsychology,12, 399–413.PubMedGoogle Scholar
  343. Raichle, M. E. (1994). Images of the mind: Studies with modern imaging techniques.Annual Review of Psychology,45, 333–356.PubMedGoogle Scholar
  344. Rainer, G., Asaad, W. F., &Miller, E. K. (1998). Selective representation of relevant information by neurons in the primate prefrontal cortex.Nature,393, 577–579.PubMedGoogle Scholar
  345. Ramier, A. M., &Hecaen, H. (1970). Role respectif des atteintes frontales et de la lateralisation lesionnelle dans les deficits de la “fluence verbal” [Respective role of frontal injuries and lesion lateralization in “verbal-fluency” deficits].Revue Neurologique,123, 2–22.Google Scholar
  346. Rao, S. C., Rainer, G., &Miller, E. K. (1997). Integration of what and where in the primate prefrontal cortex.Science,276, 821–824.PubMedGoogle Scholar
  347. Raz, N., Briggs, S. D., Marks, W., &Acker, J. D. (1999). Age-related deficits in generation and manipulation of mental images: II. The role of dorsolateral prefrontal cortex.Psychology & Aging,14, 436–444.Google Scholar
  348. Reitan, R. M., &Wolfson, D. (1994). A selective and critical review of neuropsychological deficits and the frontal lobes.Neuropsychology Review,4, 161–197.PubMedGoogle Scholar
  349. Richer, F., Decary, A., Lapierre, M. F., Rouleau, I., Bouvier, G., &Saint-Hilaire, J. M. (1993). Target detection deficits in frontal lobectomy.Brain & Cognition,21, 203–211.Google Scholar
  350. Risberg, J., &Ingvar, D. H. (1973). Patterns of activation in the grey matter of the dominant hemisphere during memorizing and reasoning.Brain,96, 737–756.PubMedGoogle Scholar
  351. Risberg, J., Maximilian, A. V., &Prohovnik, I. (1977). Changes of cortical activity patterns during habituation to a reasoning test.Neuropsychologia,15, 793–798.PubMedGoogle Scholar
  352. Roberts, A. C., Robbins, T. W., &Weiskrantz, L. (1998).The prefrontal cortex: Executive and cognitive functions. Oxford: Oxford University Press.Google Scholar
  353. Roberts, R. J., Jr.,Hager, L. D., &Heron, C. (1994). Prefrontal cognitive processes: Working memory and inhibition in the antisaccade task.Journal of Experimental Psychology: General,123, 374–393.Google Scholar
  354. Roberts, R. J., Jr., &Pennington, B. F. (1996). An interactive framework for examining prefrontal cognitive processes.Developmental Neuropsychology,12, 105–126.Google Scholar
  355. Rogers, R. D., Andrews, T. C., Grasby, P. M., Brooks, D. J., &Robbins, T. W. (2000). Contrasting cortical and subcortical activations produced by attentional-set shifting and reversal learning in humans.Journal of Cognitive Neuroscience,12, 142–162.PubMedGoogle Scholar
  356. Rogers, R. D., &Monsell, S. (1995). The cost of a predictable switch between simple cognitive tasks.Journal of Experimental Psychology: General,124, 207–231.Google Scholar
  357. Rogers, R. D., Sahakian, B. J., Hodges, J. R., Polkey, C. E., Kennard, C., &Robbins, T. W. (1998). Dissociating executive mechanisms of task control following frontal lobe damage and Parkinson’s disease.Brain,121, 815–842.PubMedGoogle Scholar
  358. Romo, R., Brody, C. D., Hernández, A., &Lemus, L. (1999). Neuronal correlates of parametric working memory in the prefrontal cortex.Nature,399, 470–473.PubMedGoogle Scholar
  359. Rosen, V. M., &Engle, R. W. (1997). The role of working memory capacity in retrieval.Journal of Experimental Psychology: General,126, 211–227.Google Scholar
  360. Rosen, V. M., &Engle, R. W. (1998). Working memory capacity and suppression.Journal of Memory & Language,39, 418–436.Google Scholar
  361. Rosenkilde, C. E. (1979). Functional heterogeneity of the prefrontal cortex in the monkey: A review.Behavioral & Neural Biology,25, 301–345.Google Scholar
  362. Rosenkilde, C. E., Bauer, R. H., &Fuster, J. M. (1981). Single cell activity in ventral prefrontal cortex of behaving monkeys.Brain Research,209, 375–394.PubMedGoogle Scholar
  363. Rosvold, H. E., &Delgado, J. M. R. (1956). The effect on delayed alternation test performance of stimulating or destroying electrically structures within the frontal lobes of the monkey’s brain.Journal of Comparative & Physiological Psychology,49, 365–372.Google Scholar
  364. Rowe, J. B., Toni, I., Josephs, O., Frackowiak, R. S. J., &Passingham, R. E. (2000). The prefrontal cortex: Response selection or maintenance within working memory?Science,288, 1656–1660.PubMedGoogle Scholar
  365. Rylander, G. (1939).Personality changes after operations on the frontal lobes. Copenhagen: Munksgaard.Google Scholar
  366. Rypma, B., &D’Esposito, M. (1999). The roles of prefrontal brain regions in components of working memory: Effects of memory load and individual differences.Proceedings of the National Academy of Sciences,96, 6558–6563.Google Scholar
  367. Rypma, B., Prabhakaran, V., Desmond, J. E., Glover, G. H., &Gabrieli, J. D. E. (1999). Load-dependent roles of frontal brain regions in the maintenance of working memory.NeuroImage,9, 216–226.PubMedGoogle Scholar
  368. Salmon, D. P., &D’Amato, M. R. (1981). Note on delay-interval illumination effects on retention in monkeys (Cebus apella).Journal of the Experimental Analysis of Behavior,36, 381–385.PubMedGoogle Scholar
  369. Sarter, M., Bernston, G. G., &Cacioppo, J. T. (1996). Brain imaging and cognitive neuroscience: Toward strong inference in attributing function to structure.American Psychologist,51, 13–21.PubMedGoogle Scholar
  370. Schumacher, E. H., Lauber, E., Awh, E., Jonides, J., Smith, E. E., &Koeppe, R. A. (1996). PET evidence for an amodal verbal working memory system.NeuroImage,3, 79–88.PubMedGoogle Scholar
  371. Seidman, L. J., Breiter, H. C., Goodman, J. M., Goldstein, J. M., Woodruff, P. W. R., O’Craven, K., Savoy, R., Tsuang, M. T., &Rosen, B. R. (1998). A functional magnetic resonance imaging study of auditory vigilance with low and high information processing demands.Neuropsychology,12, 505–518.PubMedGoogle Scholar
  372. Sergent, J. (1994). Brain-imaging studies of cognitive functions.Trends in Neurosciences,17, 221–227.PubMedGoogle Scholar
  373. Settlage, P., Zable, M., &Harlow, H. F. (1948). Problem solution by monkeys following bilateral removal of the prefrontal areas: VI. Performance on tests requiring contradictory reactions to similar and to identical stimuli.Journal of Experimental Psychology,38, 50–65.PubMedGoogle Scholar
  374. Shah, P., &Miyake, A. (1996). The separability of working memory resources for spatial thinking and language processing: An individual differences approach.Journal of Experimental Psychology: General,125, 4–27.Google Scholar
  375. Shallice, T. (1988).From neuropsychology to mental structure. Cambridge: Cambridge University Press.Google Scholar
  376. Shallice, T., &Burgess, P. W. (1991a). Deficits in strategy application following frontal lobe damage in man.Brain,114, 727–741.PubMedGoogle Scholar
  377. Shallice, T., &Burgess, P. W. (1991b). Higher-order cognitive impairments and frontal lobe lesions in man. In H. S. Levin, H. M. Eisenberg, & A. L. Benton (Eds.),Frontal lobe function and dysfunction (pp. 125–138). Oxford: Oxford University Press.Google Scholar
  378. Shimamura, A. P. (2000). The role of the prefrontal cortex in dynamic filtering.Psychobiology,28, 207–218.Google Scholar
  379. Shimamura, A. P., Janowsky, J. S., &Squire, L. R. (1990). Memory for the temporal order of events in patients with frontal lobe lesions and amnesic patients.Neuropsychologia,28, 803–813.PubMedGoogle Scholar
  380. Shimamura, A. P., Jurica, P. J., Mangels, J. A., Gershberg, F. B., &Knight, R. T. (1995). Susceptibility to memory interference effects following frontal lobe damage: Findings from tests of paired-associate learning.Journal of Cognitive Neuroscience,7, 144–152.Google Scholar
  381. Shindy, W. W., Posley, K. A., &Fuster, J. M. (1994). Reversible deficit in haptic delay tasks from cooling prefrontal cortex.Cerebral Cortex,4, 443–450.PubMedGoogle Scholar
  382. Simkins-Bullock, J., Brown, G. G., Greiffenstein, M., Malik, G.M., &McGillicuddy, J. (1994). Neuropsychological correlates of shortterm memory distractor tasks among patients with surgical repair of anterior communicating artery aneurysms.Neuropsychology,8, 246–254.Google Scholar
  383. Skinner, J. E., &Yingling, C. D. (1977). Central gating mechanisms that regulate event-related potentials and behavior.Progress in Clinical Neurophysiology,1, 30–69.Google Scholar
  384. Smith, E. E., &Jonides, J. (1997). Working memory: A view from neuro-imaging.Cognitive Psychology,33, 5–42.PubMedGoogle Scholar
  385. Smith, E. E., Jonides, J., &Koeppe, R. A. (1996). Dissociating verbal and spatial working memory using PET.Cerebral Cortex,6, 11–20.PubMedGoogle Scholar
  386. Smith, E. E., Jonides, J., Koeppe, R. A., Awh, E., Schumacher, E. H., &Minoshima, S. (1995). Spatial versus object working memory: PET investigations.Journal of Cognitive Neuroscience,7, 337–356.Google Scholar
  387. Snow, R. E., Kyllonen, P. C., &Marshalek, B. (1984). The topography of ability and learning correlations. In R. J. Sternberg (Ed.),Advances in the psychology of human intelligence (Vol. 2, pp. 47–103). Hillsdale, NJ: Erlbaum.Google Scholar
  388. Stamm, J. S. (1961). Electrical stimulation of frontal cortex in monkeys during learning of an alternation task.Journal of Neurophysiology,24, 414–426.Google Scholar
  389. Stamm, J. S., &Rosen, S. C. (1973). The locus and crucial time of implication of prefrontal cortex in the delayed response task. In K. H. Pribram & A. R. Luria (Eds.),Psychophysiology of the frontal lobes (pp. 139–153). New York: Academic Press.Google Scholar
  390. Stankov, L., &Crawford, J. D. (1993). Ingredients of complexity in fluid intelligence.Learning & Individual Differences,5, 73–111.Google Scholar
  391. Stern, C. E., Owen, A. M., Tracey, I., Look, R. B., Rosen, B. R., &Petrides, M. (2000). Activity in ventrolateral and mid-dorsolateral prefrontal cortex during nonspatial visual working memory processing: Evidence from functional magnetic resonance imaging.Neuro-Image,11, 392–399.PubMedGoogle Scholar
  392. Stroop, J. R. (1935). Studies of interference in serial verbal reactions.Journal of Experimental Psychology,18, 643–662.Google Scholar
  393. Stuss, D. T., &Benson, D. F. (1984). Neuropsychological studies of the frontal lobes.Psychological Bulletin,95, 3–28.PubMedGoogle Scholar
  394. Stuss, D. T., Floden, D., Alexander, M. P., Levine, B., &Katz, D. (2001). Stroop performance in focal lesion patients: Dissociation of processes and frontal lobe lesion location.Neuropsychologia,39, 771–786.PubMedGoogle Scholar
  395. Stuss, D. T., Levine, B., Alexander, M. P., Hong, J., Palumbo, C., Hamer, L., Murphy, K. J., &Izukawa, D. (2000). Wisconsin Card Sorting Test performance in patients with focal frontal and posterior brain damage: Effects of lesion location and test structure on separable cognitive processes.Neuropsychologia,38, 388–402.PubMedGoogle Scholar
  396. Stuss, D. T., Shallice, T., Alexander, M. P., &Picton, T. W. (1995). A multidisciplinary approach to anterior attentional functions. In J. Grafman, K. J. Holyoak, & F. Boller (Eds.),Structure and functions of the human prefrontal cortex. (Annals of the New York Academy of Sciences, Vol. 769, pp. 191–211). New York: New York Academy of Sciences.Google Scholar
  397. Süß, H.-M., Oberauer, K., Wittman, W. W., Wilhelm, O., &Schulze, R. (2002). Working-memory capacity explains reasoning ability and a little bit more.Intelligence,30, 261–288.Google Scholar
  398. Swartz, B. E., Halgren, E., Fuster, J. M., &Mandelkern, M. (1994). An 18FDG-PET study of cortical activation during a shortterm visual memory task in humans.NeuroReport,5, 925–928.PubMedGoogle Scholar
  399. Sweeney, J. A., Mintun, M. A., Kwee, S., Wiseman, M. B., Brown, D. L., Rosenberg, D. R., &Carl, J. R. (1996). Positron emission tomography study of voluntary saccadic eye movements and spatial working memory.Journal of Neurophysiology,75, 454–468.PubMedGoogle Scholar
  400. Taylor, S. F., Kornblum, S., Lauber, E. J., Minoshima, S., &Koeppe, R. A. (1997). Isolation of specific interference processing in the Stroop task: PET activation studies.NeuroImage,6, 81–92.PubMedGoogle Scholar
  401. Teuber, H. L., Battersby, W. S., &Bender, M. B. (1951). Performance of complex visual tasks after cerebral lesions.Journal of Nervous & Mental Disease,114, 413–429.Google Scholar
  402. Teuber, H. L., &Mishkin, M. (1954). Judgment of visual and postural vertical after brain injury.Journal of Psychology,38, 161–175.Google Scholar
  403. Teuber, H. L., &Weinstein, S. (1956). Ability to discover hidden figures after cerebral lesions.Archives of Neurology & Psychiatry,76, 369–379.Google Scholar
  404. Troyer, A. K., Moscovitch, M., Winocur, G., Alexander, M. P., &Stuss, D. (1998). Clustering and switching on verbal fluency: The effects of focal frontal- and temporal-lobe lesions.Neuropsychologia,36, 499–504.PubMedGoogle Scholar
  405. Tucha, O., Smely, C., &Lange, K. W. (1999). Verbal and figural fluency in patients with mass lesions of the left or right frontal lobes.Journal of Clinical & Experimental Neuropsychology,21, 229–236.Google Scholar
  406. Tuholski, S. W., Engle, R. W., &Baylis, G. C. (2001). Individual differences in working memory capacity and enumeration.Memory & Cognition,29, 484–492.Google Scholar
  407. Turner, M. L., &Engle, R. W. (1989). Is working memory capacity task dependent?Journal of Memory & Language,28, 127–154.Google Scholar
  408. Uhl, F., Franzen, P., Serles, W., Lange, W., Lindinger, G., &Deecke, L. (1990). Anterior frontal cortex and the effect of proactive interference in paired associate learning: A DC potential study.Journal of Cognitive Neuroscience,2, 373–382.Google Scholar
  409. Uhl, F., Podreka, I., &Deecke, L. (1994). Anterior frontal cortex and the effect of proactive interference in word pair learning-Results of Brain-SPECT.Neuropsychologia,32, 241–247.PubMedGoogle Scholar
  410. Upton, D., &Corcoran, R. (1995). The role of the right temporal lobe in card sorting: A case study.Cortex,31, 405–409.PubMedGoogle Scholar
  411. Valentine, E. R. (1975). Performance on two reasoning tasks in relation to intelligence, divergence and interference proneness.British Journal of Educational Psychology,45, 198–205.Google Scholar
  412. Van der Linden, M., Bruyer, R., Roland, J., &Schils, J. P. (1993). Proactive interference in patients with amnesia resulting from anterior communicating artery aneurysm.Journal of Clinical & Experimental Neuropsychology,15, 525–536.Google Scholar
  413. Van der Linden, M., Coyette, F., &Seron, X. (1992). Selective impairment of the “central executive” component of working memory: A single case study.Cognitive Neuropsychology,9, 301–326.Google Scholar
  414. van Zomeren, A. H., &Brouwer, W. H. (1994).Clinical neuropsychology of attention. Oxford: Oxford University Press.Google Scholar
  415. Vendrell, P., Junque, C., Pujol, J., Jurado, M. A., Molet, J., &Grafman, J. (1995). The role of prefrontal regions in the Stroop task.Neuropsychologia,33, 341–362.PubMedGoogle Scholar
  416. Verin, M., Partiot, A., Pillon, B., Malapani, C., Agid, Y., &Dubois, B. (1993). Delayed response tasks and prefrontal lesions in man—Evidence for self generated patterns of behaviour with poor environmental modulation.Neuropsychologia,31, 1379–1396.PubMedGoogle Scholar
  417. Vilkki, J., Holst, P., Ohman, J., Servo, A., &Heiskanen, O. (1992). Cognitive test performances related to early and late computed tomography findings after closed-head injury.Journal of Clinical & Experimental Neuropsychology,14, 518–532.Google Scholar
  418. Volpe, B. T., &Hirst, W. (1983). Amnesia following the rupture and repair of an anterior communicating artery aneurysm.Journal of Neurology, Neurosurgery, & Psychiatry,46, 704–709.Google Scholar
  419. Walker, R., Husain, M., Hodgson, T. L., Harrison, J., &Kennard, C. (1998). Saccadic eye movements and working memory deficits following damage to human prefrontal cortex.Neuropsychologia,36, 1141–1159.PubMedGoogle Scholar
  420. Waltz, J. A., Knowlton, B. J., Holyoak, K. J., Boone, K. B., Mishkin, F. S., de Menezes Santos, M., Thomas, C. R., &Miller, B. L. (1999). A system for relational reasoning in human prefrontal cortex.Psychological Science,10, 119–125.Google Scholar
  421. Warkentin, S., Nilsson, A., Risberg, J., &Karlson, S. (1989). Absence of frontal lobe activation in schizophrenia.Journal of Cerebral Blood Flow & Metabolism,9 (Suppl. 1), S354.Google Scholar
  422. Warrington, E. K., James, M., &Maciejewski, C. (1986). The WAIS as a lateralizing and localizing diagnostic instrument: A study of 656 patients with unilateral cerebral lesions.Neuropsychologia,24, 223–239.PubMedGoogle Scholar
  423. Watanabe, T., &Niki, H. (1985). Hippocampal unit activity and delayed response in the monkey.Brain Research,325, 241–254.PubMedGoogle Scholar
  424. Weigl, E. (1941). On the psychology of so-called processes of abstraction.Journal of Abnormal & Social Psychology,6, 3–33.Google Scholar
  425. Weinberger, D. R., Berman, K. F., &Zec, R. F. (1986). Physiologic dysfunction of dorsolateral prefrontal cortex in schizophrenia.Archives of General Psychiatry,43, 114–124.PubMedGoogle Scholar
  426. West, R. L. (1996). An application of prefrontal cortex function theory to cognitive aging.Psychological Bulletin,120, 272–292.PubMedGoogle Scholar
  427. West, R. [L.], &Alain, C. (1999). Event-related neural activity associated with the Stroop task.Cognitive Brain Research,8, 157–174.PubMedGoogle Scholar
  428. West, R. [L.], &Alain, C. (2000a). Effects of task context and fluctuations of attention on neural activity supporting performance of the Stroop task.Brain Research,873, 102–111.PubMedGoogle Scholar
  429. West, R. [L.], &Alain, C. (2000b). Evidence for the transient nature of a neural system supporting goal-directed action.Cerebral Cortex,10, 748–752.PubMedGoogle Scholar
  430. White, I. M., &Wise, S. P. (1999). Rule dependent neuronal activity in the prefrontal cortex.Experimental Brain Research,126, 315–335.Google Scholar
  431. Wickens, D. (1970). Encoding categories of words: An empirical approach to memory.Psychological Review,77, 1–15.Google Scholar
  432. Wilson, F. A.W., O’Scalaidhe, S. P., &Goldman-Rakic, P. S. (1993). Dissociation of object and spatial processing domains in primate prefrontal cortex.Science,260, 1955–1958.PubMedGoogle Scholar
  433. Wilson, W. A., Jr. (1962). Alternation in normal and frontal monkeys as a function of response and outcome of the previous trial.Journal of Comparative & Physiological Psychology,55, 701–704.Google Scholar
  434. Wise, S. P., Murray, E. A., &Gerfen, C. R. (1996). The frontal cortexbasal ganglia system in primates.Critical Reviews in Neurobiology,10, 317–356.PubMedGoogle Scholar
  435. Woodrow, H. (1916). The faculty of attention.Journal of Experimental Psychology,1, 285–318.Google Scholar
  436. Woods, D. L., &Knight, R. T. (1986). Electrophysiological evidence of increased distractibility after dorsolateral prefrontal lesions.Neurology,36, 212–216.PubMedGoogle Scholar
  437. Woods, R. P. (1996). Modeling for intergroup comparisons of imaging data.NeuroImage, 4, S84-S94.PubMedGoogle Scholar
  438. Worsham, R. W., &D’Amato, M. R. (1973). Ambient light, white noise, and monkey vocalization as sources of interference in visual short-term memory of monkeys.Journal of Experimental Psychology,99, 99–105.PubMedGoogle Scholar
  439. Yacosynski, G. K., &Davies, L. (1945). An experimental study of the frontal lobes in man.Psychosomatic Medicine,7, 97–107.Google Scholar
  440. Yamaguchi, S., &Knight, R. T. (1990). Gating of somatosensory inputs by human prefrontal cortex.Brain Research,521, 281–288.PubMedGoogle Scholar
  441. Yingling, C. D., &Skinner, J. E. (1977). Gating of thalamic input to cerebral cortex by nucleus reticularis thalami. In J. E. Desmedt (Ed.),Progress in clinical neurophysiology (Vol. 1, pp. 70–96). Basel: Karger.Google Scholar
  442. Zable, M., &Harlow, H. F. (1946). The performance of rhesus monkeys on series of object-quality and positional discriminations and discrimination reversals.Journal of Comparative Psychology,39, 13–23.PubMedGoogle Scholar
  443. Zakay, D., &Block, R. A. (1997). Temporal cognition.Current Directions in Psychological Science,6, 12–16.Google Scholar
  444. Zatorre, R. J., &McEntee, W. J. (1983). Semantic encoding deficits in a case of traumatic amnesia.Brain & Cognition,2, 331–345.Google Scholar
  445. Zola-Morgan, S., &Squire, L. R. (1985). Medial temporal lesions in monkeys impair memory on a variety of tasks sensitive to human amnesia.Behavioral Neuroscience, 99, 22–34.PubMedGoogle Scholar
  446. Zysset, S., Müller, K., Lohman, G., &von Cramon, D. Y. (2001). Color-word matching Stroop task: Separating interference and response conflict.NeuroImage,13, 29–36.PubMedGoogle Scholar

Copyright information

© Psychonomic Society, Inc. 2002

Authors and Affiliations

  1. 1.Department of PsychologyUniversity of North Carolina at GreensboroGreensboro
  2. 2.School of PsychologyGeorgia Institute of TechnologyAtlanta

Personalised recommendations