Psychonomic Bulletin & Review

, Volume 8, Issue 2, pp 244–261 | Cite as

Richer color experience in observers with multiple photopigment opsin genes

  • Kimberly A. Jameson
  • Susan M. Highnote
  • Linda M. Wasserman
Article

Abstract

Traditional color vision theory posits that three types of retinal photopigments transduce light into a trivariate neural color code, thereby explaining color-matching behaviors. Thisprinciple of trichromacy is in need of reexamination in view of molecular genetics results suggesting that a substantial percentage of women possess more than three classes of retinal photopigments. At issue is the question of whether four-photopigment retinas necessarily yield trichromatic color perception. In the present paper, we review results and theory underlying the accepted photoreceptor-based model of trichromacy. A review of the psychological literature shows that gender-linked differences in color perception warrant further investigation of retinal photopigment classes and color perception relations. We use genetic analyses to examine an important position in the gene sequence, and we empirically assess and compare the color perception of individuals possessing more than three retinal photopigment genes with those possessing fewer retinal photopigment genes. Women with four-photopigment genotypes are found to perceive significantly more chromatic appearances in comparison with either male or female trichromat controls. We provide a rationale for this previously undetected finding and discuss implications for theories of color perception and gender differences in color behavior.

References

  1. Almirall, H., &Gutierrez, E. (1987). Auditory and visual reaction time in adults during long performance.Perceptual & Motor Skills,65, 543–552.Google Scholar
  2. Anyan, W.R., Jr., &Quillian, W. W., II (1971). The naming of primary colors by children.Child Development,42, 1629–1632.CrossRefGoogle Scholar
  3. Asenjo, A. B., Rim, J., &Oprian, D. D. (1994). Molecular determinants of human red /green color discrimination.Neuron,12, 1131–1138.CrossRefPubMedGoogle Scholar
  4. Blough, P. M., &Slavin, L. K. (1987). Reaction time assessments of gender differences in visual-spatial performance.Perception & Psychophysics,41, 276–281.Google Scholar
  5. Boker, S. (1997). A measurement of the adaptation of color vision to the spectral environment.Psychological Science,8, 130–143.CrossRefGoogle Scholar
  6. Boring, E. G. (1942).Sensation and perception in the history of experimental psychology. New York: Appleton-Century-Crofts.Google Scholar
  7. Boynton, R. M., Schafer, W. & Neun, M. E. (1964). Hue-wavelength relation measured by color-naming method for three retinal locations.Science,146, 666–668.CrossRefPubMedGoogle Scholar
  8. Brabyn, L. B., &McGuinness, D. (1979). Gender differences in response to spatial frequency and stimulus orientation.Perception & Psychophysics,26, 319–324.Google Scholar
  9. Brindley, G. S. (1960).Physiology of the retina and the visual pathway. London: Edward Arnold.Google Scholar
  10. Buckalew, L. W., &Buckalew, N. M. (1989). Note on color preference and color vision test performance.Perception & Motor Skills,69, 1039–1042.Google Scholar
  11. Campbell, F. W. (1986). In search of the spectrum’s elusive yellow.Ophthalmic Physiological Optics,6, 129–133.CrossRefGoogle Scholar
  12. Cohn, S. A., Emmerich, D. S., &Carlson, E. A. (1989). Differences in the responses of heterozygous carriers of color blindness and normal controls to briefly presented stimuli.Vision Research,29, 255–262.CrossRefPubMedGoogle Scholar
  13. Crone, R. A. (1959). Spectral sensitivity in color-defective subjects and heterozygous carriers.American Journal of Ophthalmology,48, 231–238.PubMedGoogle Scholar
  14. Dartnall, H. J. A., Bowmaker, J. K., &Mollon, J. D. (1983). Human visual pigments: Microspectrophotometric results from the eyes of seven persons.Proceedings of the Royal Society of London: Series B,220, 115–13.CrossRefGoogle Scholar
  15. Deeb, S. S., &Motulsky, A. G. (1996). Molecular genetics of human color vision.Behavioral Genetics,26, 195–206.CrossRefGoogle Scholar
  16. DeMarco, P., Pokorny, J., &Smith, V. C. (1992). Full spectrum cone sensitivity functions for X-chromosome-linked anomalous trichromats.Journal of the Optical Society of America A,9, 1465–1476.CrossRefGoogle Scholar
  17. DeVries, H. L. (1948). The luminosity curve of the eye as determined by the measurements with the flickerphotometer.Physica,XIV, 367–380.CrossRefGoogle Scholar
  18. Dimmick, F. L., &Hubbard, M. R. (1939). The spectral location of psychologically unique yellow, green and blue.American Journal of Psychology,52, 242–251.CrossRefGoogle Scholar
  19. Feig, K., &Ropers, H. (1978). On the incidence of unilateral and bilateral colour blindness in heterozygous females.Journal of Human Genetics,41, 313–323.CrossRefGoogle Scholar
  20. Furbee, L. N., Maynard, K., Smith, J., Benfer, B. A., Jr.,Quick, S., &Ross, L. (1997). The emergence of color cognition from color perception.Journal of Linguistic Anthropology,6, 223–240.CrossRefGoogle Scholar
  21. Hardin, C. L., &Maffi, L. (Eds.) (1997).Color categories in thought and language. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  22. He, J. C., &Shevell, S. K. (1995). Variation in color matching and discrimination among deuteranomalous trichromats: Theoretical implications of small differences in photopigments.Vision Research,35, 2579–2588.CrossRefPubMedGoogle Scholar
  23. Hecht, S., &Shlaer, S. (1936). The color vision of dichromats.Journal of General Physiology,20, 57–93.CrossRefPubMedGoogle Scholar
  24. Hsia, Y. &Graham, C. H. (1957). Spectral luminosity curves for protanopic, deuteranopic and normal subjects.Proceedings of the National Academy of Science,43, 1011–1019.CrossRefGoogle Scholar
  25. Jacobs, G. H. (1998). Photopigments and seeing—Lessons from natural experiments.Investigative Ophthalmology & Visual Science,39, 2205–2216.Google Scholar
  26. Jameson, D., &Hurvich, L. M. (1956). Theoretical analysis of anomalous trichromatic color vision.Journal of the Optical Society of America,46, 1075–1089.CrossRefPubMedGoogle Scholar
  27. Jordan, G., &Mollon, J. D. (1993). A study of women heterozygous for color deficiencies.Vision Research,33, 1495–1508.CrossRefPubMedGoogle Scholar
  28. Judd, D. B. (1945). Standard response functions for protanopic and deuteranopic vision.Journal of the Optical Society of America,35, 199–221.CrossRefGoogle Scholar
  29. Kraft, T. W., Neitz, J., &Neitz, M. (1998). Spectra of human cones.Vision Research,38, 3663–3670.CrossRefPubMedGoogle Scholar
  30. Krill, A. E., &Beutler, E. (1964). The red-light absolute threshold in heterozygote protan carriers.Investigative Ophthalmology,3, 107–118.PubMedGoogle Scholar
  31. Krill, A. E., &Beutler, E. (1965). Red light thresholds in heterozygote carriers of protanopia: Genetic implications.Science,149, 186–188.CrossRefPubMedGoogle Scholar
  32. Lakoff, R. T. (1975).Language and woman’s place. San Francisco: Harper & Row.Google Scholar
  33. Lyon, M. F. (1961). Gene action in the X chromosome of the mouse(Mus musculus L.).Nature,190, 372–373.CrossRefPubMedGoogle Scholar
  34. MacLeod, D. I. A. (1985). Receptoral constraints on colour appearance. In D. Ottoson & S. Zeki (Eds.),Central and peripheral mechanisms of colour vision (pp. 103–116). London: Macmillian.Google Scholar
  35. MacLeod, D. I. A., & von der Twer, T. (2000).The pleistochrome: Optimal opponent codes for natural colors. Manuscript submitted for publication.Google Scholar
  36. Maloney, L. T. (1992). Color constancy and color perception: The linear models framework. In D. E. Meyer & S. Kornblum (Eds.),Attention and performance XIV: Synergies in experimental psychology, artificial intelligence, and cognitive neuroscience (pp. 59–78). Cambridge, MA: MIT Press.Google Scholar
  37. Mausfeld, R. (1998). Color perception: From Grassman codes to a dual code for object and illumination colors. In W. G. K. Backhaus, R. Kliegl, & J. S. Werner (Eds.),Color vision: Perspectives from different disciplines (pp. 219–250). New York: Walter de Gruyter.Google Scholar
  38. Mausfeld, R., &Niederée, R. (1993). Inquiries into relational concepts of colour based on an incremental principle of colour coding for minimal relational stimuli.Perception,22, 427–462.CrossRefPubMedGoogle Scholar
  39. McGuinness, D. (1976). Away from a unisex psychology: Individual differences in visual sensory and perceptual processes.Perception,5, 279–294.CrossRefPubMedGoogle Scholar
  40. McGuinness, D., &Lewis, I. (1976). Sex differences in visual persistence: Experiments on the Ganzfeld and afterimages.Perception,5, 295–301.CrossRefPubMedGoogle Scholar
  41. Menzel, R. (1985). Colour pathways and colour vision in the honeybee. In D. Ottoson & S. Zeki (Eds.),Central and peripheral mechanisms of colour vision (Proceedings of an International Symposium at the Wenner-Gren Center, Vol. 43, pp. 211–233). London: Macmillan.Google Scholar
  42. Merbs, S. L., &Nathans, J. (1992a). Absorption spectra of human cone pigments.Nature,356, 433–435.CrossRefPubMedGoogle Scholar
  43. Merbs, S. L., &Nathans, J. (1992b). Absorption spectra of hybrid pigments responsible for anomalous color vision.Science,258, 464–466.CrossRefGoogle Scholar
  44. Merbs, S. L., &Nathans, J. (1993). Role of hydroxyl-bearing amino acids in differentially tuning the absorption spectra of the human red and green cone pigments.Photochemical Photobiology,58, 706–710.CrossRefGoogle Scholar
  45. Miller, S. A., Dykes, D. D., &Polesky, H. F. (1998). A simple salting out procedure for extracting DNA from human nucleated cells.Nucleic Acids Research,16, 1215.CrossRefGoogle Scholar
  46. Miyahara, E., Pokorny, J., Smith, V. C., Baron, R., &Baron, E. (1998). Color vision in two observers with highly biased LWS/MWS cone ratios.Vision Research,38, 601–612.CrossRefPubMedGoogle Scholar
  47. Mollon, J. D. (1992). Worlds of difference.Nature,356, 378–379.CrossRefPubMedGoogle Scholar
  48. Mollon, J. D. (1995). Seeing colour. In T. Lamb & J. Bourriau (Eds.),Colour, art & science (pp. 127–150). Cambridge: Cambridge University Press.Google Scholar
  49. Nagy, A. L., MacLeod, D. I. A., Heyneman, N. E., &Eiser, A. (1981). Four cone pigments in women heterozygous for color deficiency.Journal of the Optical Society of America,71, 719–722.CrossRefPubMedGoogle Scholar
  50. Nathans, J. (1997). The genes for color vision. In A. Byrne & D. R. Hilbert (Eds.),Readings on Color, Vol. 2: The science of color (pp. 249–258). Cambridge, MA: MIT Press.Google Scholar
  51. Nathans, J., Piantanida, T. P., Eddy, R. L., Shows, T. B., &Hogness, D. S. (1986). Molecular genetics of inherited variation in human color vision.Science,232, 203–210.CrossRefPubMedGoogle Scholar
  52. Nathans, J., Thomas, D., &Hogness, D. S. (1986). Molecular genetics of human color vision: The genes encoding blue, green, and red pigments.Science,232, 193–202.CrossRefPubMedGoogle Scholar
  53. Neitz, J., &Jacobs, G. H. (1986). Polymorphism of the long-wavelength cone in normal human color vision.Nature,323, 623–625.CrossRefPubMedGoogle Scholar
  54. Neitz, J., &Neitz, M. (1994). Colour vision defects. In A. S. Wright & B. Jay (Eds.),Molecular genetics of inherited eye disorders (pp. 217–257). Chur: Harwood.Google Scholar
  55. Neitz, J., Neitz, M., &Jacobs, G. H. (1993). More than three different cone pigments among people with normal color vision.Vision Research,33, 117–122.CrossRefPubMedGoogle Scholar
  56. Neitz, M., Kraft, T. W., &Neitz, J. (1998). Expression of L-cone pigment gene subtypes in females.Vision Research,38, 3221–3225.CrossRefPubMedGoogle Scholar
  57. Neitz, M., &Neitz, J. (1998). Molecular genetics and the biological basis of color vision. In W. G. K. Backhaus, R. Kliegl, & J. S. Werner (Eds.),Color Vision: Perspectives from different disciplines (pp. 101–119). New York: Walter de Gruyter.Google Scholar
  58. Neitz, M., Neitz, J., &Jacobs, G. H. (1995). Genetic basis of photopigment variations in human dichromats.Vision Research,35, 2095–2130.CrossRefPubMedGoogle Scholar
  59. Nerger, J. L. (1988).The relative numbers of long-wavelength-sensitive to middle-wavelength-sensitive cones in the human fovea and parafovea. Unpublished doctoral dissertation, University of California at San Diego, La Jolla.Google Scholar
  60. Nowaczyk, R. H. (1982). Sex-related differences in the color lexicon.Language & Speech,25, 257–265.Google Scholar
  61. Piantanida, T. P. (1976). Polymorphism of human color vision.American Journal of Optometry & Physiological Optics,53, 647–657.Google Scholar
  62. Pickford, R. W. (1959). Some heterozygous manifestations of colourblindness.British Journal of Physiological Optics,16, 83–95.PubMedGoogle Scholar
  63. Pokorny, J., &Smith, V. C. (1977). Evaluation of a single pigment shift model of anomalous trichromacy.Journal of the Optical Society of America,67, 1196–1209.CrossRefPubMedGoogle Scholar
  64. Pokorny, J., &Smith, V. C. (1982). New observations concerning redgreen colour defects.Colour Research & Application,7, 159–164.CrossRefGoogle Scholar
  65. Poynter, D. (1988). Variability in brightness matching of colored lights.Human Factors,30, 143–151.PubMedGoogle Scholar
  66. Purdy, D. (1931). Spectral hue as a function of intensity.American Journal of Psychology,43, 541–559.CrossRefGoogle Scholar
  67. Regan, B. C., Reffin, J. P., &Mollon, J. D. (1994). Luminance noise and the rapid determination of discrimination ellipses in colour deficiency.Vision Research,34, 1279–1299.CrossRefPubMedGoogle Scholar
  68. Rich, E. (1977). Sex-related difference in color vocabulary.Language & Speech,20, 404–409.Google Scholar
  69. Roorda, A., &Williams, D. R. (1999). The arrangement of the three cone classes in the living human eye.Nature,397, 520–522.CrossRefPubMedGoogle Scholar
  70. Saito, M. (1994). A cross-cultural study on color preference in three Asian cities: Comparison between Tokyo, Taipei and Tianjin.Japanese Psychological Research,36, 219–232.Google Scholar
  71. Saito, M. (1996). A comparative study of color preferences in Japan, China and Indonesia with emphasis on the preference for white.Perceptual & Motor Skills,83, 115–128.Google Scholar
  72. Saito, M. (1999). Blue and seven phenomena among Japanese students.Perceptual & Motor Skills,89, 532–536.CrossRefGoogle Scholar
  73. Schmidt, I. (1955). A sign of manifest heterozygosity in carriers of color deficiency.American Journal of Optometry,32, 404–408.Google Scholar
  74. Shapiro, A. E. (1984).The optical papers of Isaac Newton: Vol. 1. The optical lectures 1670–1672 (pp. 539–554). Cambridge: Cambridge University Press.Google Scholar
  75. Sharpe, L. T., Stockman, A., Jaegle, H., Knau, H., Klausen, G., Reitner, A, &Nathans, J. (1998). Red, green and red-green hybrid pigments in the human retina: Correlations between deduced protein sequences and psychophysically measured spectral sensitivities.Journal of Neuroscience,18, 10053–10069.PubMedGoogle Scholar
  76. Sharpe, L. T., Stockman, A., Knau, H., &Jaegle, H. (1998). Macular pigment densities derived from central and peripheral spectral sensitivity differences.Vision Research,38, 3233–3239.CrossRefPubMedGoogle Scholar
  77. Sjoberg, S. A., Neitz, M., Balding, S. D., &Neitz, J. (1998). L-cone pigment genes expressed in normal colour vision.Vision Research,38, 3213–3219.CrossRefPubMedGoogle Scholar
  78. Smeulders, N., Campbell, F. W., &Andrews, P. R. (1994). The role of delineation and spatial frequency in the perception of the colors of the spectrum.Vision Research,34, 927–936.CrossRefPubMedGoogle Scholar
  79. Stockman, A., &Sharpe, L. T. (1998). Human cone spectral sensitivities: A progress report.Vision Research,38, 3193–3206.CrossRefPubMedGoogle Scholar
  80. Stoerig, P. (1998). Wavelength information processing versus color perception: Evidence from blindsight and color-blind sight. In W. G. K. Backhaus, R. Kliegl, & J. S. Werner (Eds.),Color vision: Perspectives from different disciplines (pp. 131–147). New York: Walter de Gruyter.Google Scholar
  81. Swaringen, S., Layman, S., &Wilson, A. (1978). Sex differences in color naming.Perceptual & Motor Skills,47, 440–442.Google Scholar
  82. Thomas, L. L., Curtis, A. J., &Bolton, R. (1978). Sex differences in elicited color lexicon size.Perceptual & Motor Skills,47, 77–78.Google Scholar
  83. Thomson, L. C. (1954). Sensations aroused by monochromatic stimuli and their prediction.Optical Acta,1, 93–102.Google Scholar
  84. Troscianko, T., Davidoff, J., Humphreys, G., Landis, T., Fahle, M., Greenlee, M., Brugger, P., &Phillips, W. (1996). Human colour discrimination based on a non-parvocellular pathway.Current Biology,6, 200–210.CrossRefPubMedGoogle Scholar
  85. Wilder, D. G. (1970).The photopic spectral sensitivity of color normal, protanopic and deuteronopic observers. Unpublished doctoral dissertation, University of California, Los Angeles.Google Scholar
  86. Winderickx, J., Battisti, L., Hibiya, Y., Motulsky, A. G., &Deeb, S. S. (1993). Haplotype diversity in the human red and green opsin genes: Evidence for frequent sequence exchange in exon 3.Human Molecular Genetics Polymorphism,2, 1413–1421.CrossRefGoogle Scholar
  87. Winderickx, J., Lindsey, D. T., Sanocki, E., Teller, D. Y., Motulsky, A.G., &Deeb, S. S. (1992). Polymorphism in red photopigment underlies variation in color matching.Nature,356, 431–433.CrossRefPubMedGoogle Scholar
  88. Wyszecki, G., &Stiles, W. S. (1982).Color science: Concepts and methods, quantitative data and formulae (2nd ed.). New York: Wiley.Google Scholar
  89. Yasuma, T., Tokuda, H., &Ichikawa, H. (1984). Abnormalities of cone photopigments in genetic carriers of protanomaly.Archives of Ophthalmology,102, 897–900.PubMedGoogle Scholar
  90. Zegura, S. L. (1997). Genes, opsins, neurons, and color categories: Closing the gaps. In C. L. Hardin & L. Maffi (Eds.),Color categories in thought and language (pp. 283–292). Cambridge: Cambridge University Press.CrossRefGoogle Scholar

Copyright information

© Psychonomic Society, Inc. 2001

Authors and Affiliations

  • Kimberly A. Jameson
    • 1
  • Susan M. Highnote
    • 1
  • Linda M. Wasserman
    • 2
  1. 1.Department of PsychologyUniversity of California at San DiegoLa Jolla
  2. 2.University of California at San Diego School of MedicineLa Jolla

Personalised recommendations