Memory & Cognition

, Volume 31, Issue 7, pp 1136–1145 | Cite as

Does men’s advantage in mental rotation persist when real three-dimensional objects are either felt or seen?

Article

Abstract

In several spatial tasks in which men outperform women in the processing of visual input, the sex difference has been eliminated in matching contexts limited to haptic input. The present experiment tested whether such contrasting results would be reproduced in a mental rotation task. A standard visual condition involved two-dimensional illustrations of three-dimensional stimuli; in a haptic condition, three-dimensional replicas of these stimuli were only felt; in an additional visual condition, these replicas were seen. The results indicated that, irrespective of condition, men’s response times were shorter than women’s, although accuracy did not significantly differ according to sex. For both men and women, response times were shorter and accuracy was higher in the standard condition than in the haptic one, the best performances being recorded when full replicas were shown. Self-reported solving strategies also varied as a function of sex and condition. The discussion emphasizes the robustness of men’s faster speed in mental rotation. With respect to both speed and accuracy, the demanding sequential processing called for in the haptic setting, relative to the standard condition, is underscored, as is the benefit resulting from easier access to depth cues in the visual context with real three-dimensional objects.

References

  1. Amponsah, B. (2000). A comparison of sex differences in visual-spatial performance from preadolescence to adulthood in Ghana and Norway.South African Journal of Psychology,30, 25–31.Google Scholar
  2. Barbour, C. G., &Meyer, G. W. (1992). Visual cues and pictorial limitations for computer generated photo-realistic images.Visual Computer,9, 151–165.CrossRefGoogle Scholar
  3. Bülthoff, H. H., &Edelman, S. (1992). Psychophysical support for a two-dimensional view interpolation theory of object recognition.Proceedings of the National Academy of Sciences,89, 60–64.CrossRefGoogle Scholar
  4. Carpenter, P. A., &Eisenberg, P. (1978). Mental rotation and the frame of reference in blind and sighted individuals.Perception & Psychophysics,23, 117–124.CrossRefGoogle Scholar
  5. Collins, D. W., &Kimura, D. (1997). A large sex difference on a two-dimensional mental rotation task.Behavioral Neuroscience,111, 845–849.CrossRefPubMedGoogle Scholar
  6. Cooper, L. A. (1976). Individual differences in visual comparison processes.Perception & Psychophysics,19, 433–444.CrossRefGoogle Scholar
  7. Dellantonio, A., &Spagnolo, F. (1990). Mental rotation of tactual stimuli.Acta Psychologica,73, 245–257.CrossRefPubMedGoogle Scholar
  8. Dodds, A. G. (1978). Hemispheric differences in tactuo-spatial processing.Neuropsychologia,16, 247–249.CrossRefPubMedGoogle Scholar
  9. Dodds, A. G. (1983). Mental rotation and visual imagery.Journal of Visual Impairment & Blindness,77, 16–18.Google Scholar
  10. Ericsson, K. A., &Simon, H. A. (1993).Protocol analysis: Verbal reports as data. Cambridge, MA: MIT Press.Google Scholar
  11. Fagot, J., Lacreuse, A., &Vauclair, J. (1993). Haptic discrimination of nonsense shapes: Hand exploratory strategies but not accuracy reveal laterality effects.Brain & Cognition,21, 212–225.CrossRefGoogle Scholar
  12. Freedman, R. J., &Rovegno, L. (1981). Ocular dominance, cognitive strategy, and sex differences in spatial ability.Perceptual & Motor Skills,52, 651–654.Google Scholar
  13. Gentaz, E., &Hatwell, Y. (1995). The haptic “oblique effect” in children’s and adults’ perception of orientation.Perception,24, 631–646.CrossRefPubMedGoogle Scholar
  14. Goldstein, D., Haldane, D., &Mitchell, C. (1990). Sex differences in visual-spatial ability: The role of performance factors.Memory & Cognition,18, 546–550.CrossRefGoogle Scholar
  15. Hatwell, Y. (1990). Spatial perception by eyes and hand: Comparison and intermodal integration. In C. Bard, M. Fleury, & L. Hay (Eds.),Development of eye-hand coordination across the life span (pp. 99–132). Columbia: University of South Carolina Press.Google Scholar
  16. Heller, M. A. (1993). Influence of visual guidance on braille recognition: Low lighting also helps touch.Perception & Psychophysics,54, 675–681.CrossRefGoogle Scholar
  17. Heller, M. A., Calcaterra, J. A., Green, S. L., &de Lima, J. (1999). The effect of orientation on braille recognition in persons who are sighted and blind.Journal of Visual Impairment & Blindness,93, 416–418.Google Scholar
  18. Hollins, M. (1986). Haptic mental rotation: More consistent in blind subjects?Journal of Visual Impairment & Blindness,80, 950–952.Google Scholar
  19. Humphrey, G. K., &Khan, S. C. (1992). Recognizing novel views of three-dimensional objects.Canadian Journal of Psychology,46, 170–190.CrossRefPubMedGoogle Scholar
  20. Kaushall, P., &Parsons, L. M. (1981). Optical information and practice in the discrimination of three-dimensional mirror-reflected objects.Perception,10, 545–562.CrossRefPubMedGoogle Scholar
  21. Kennedy, J. M., Gabias, P., &Nicholls, A. (1991). Tactile pictures. In M. A. Heller & W. Schiff (Eds.),The psychology of touch (pp. 263–299). Hillsdale, NJ: Erlbaum.Google Scholar
  22. Klatzky, R. L., Golledge, R. G., Loomis, J. M., Cicinelli, J. G., &Pellegrino, J. W. (1995). Performance of blind and sighted persons on spatial tasks.Journal of Visual Impairment & Blindness,89, 70–82.Google Scholar
  23. Lakatos, S., &Marks, L. E. (1999). Haptic form perception: Relative salience of local and global features.Perception & Psychophysics,61, 895–908.CrossRefGoogle Scholar
  24. Lederman, S. J., &Klatzky, R. L. (1990). Haptic exploration and object representation. In M. Goodale (Ed.),Vision and action: The control of grasping (pp. 98–109). Norwood, NJ: Ablex.Google Scholar
  25. Lederman, S. J., &Klatzky, R. L. (1996). Action for perception: Manual exploratory movements for haptically processing objects and their features. In A. M. Wing, P. Haggard, & J. R. Flanagan (Eds.),Hand and brain: The neurophysiology and psychology of hand movements (pp. 431–446). San Diego: Academic Press.Google Scholar
  26. Lederman, S. J., &Klatzky, R. L. (1997). Relative availability of surface and object properties during early haptic processing.Journal of Experimental Psychology: Human Perception & Performance,23, 1680–1707.CrossRefGoogle Scholar
  27. Lederman, S. J., &Klatzky, R. L. (1998). The hand as a perceptual system. In K. J. Connolly (Ed.),The psychobiology of the hand (pp. 16–35). London: Mac Keith Press.Google Scholar
  28. Li, C., Nuttall, R. L., &Zhu, W. (1999). Writing Chinese characters and success on mental rotation test.Perceptual & Motor Skills,88, 1261–1270.CrossRefGoogle Scholar
  29. Linn, M. C., &Petersen, A. C. (1985). Emergence and characterization of sex differences in spatial ability: A meta-analysis.Child Development,56, 1479–1498.CrossRefPubMedGoogle Scholar
  30. Logie, R. H. (1995).Visuo-spatial working memory. Hillsdale, NJ: Erlbaum.Google Scholar
  31. Loomis, J. M., &Lederman, S. J. (1986). Tactual perception. In K. R. Boff, L. Kaufman, & J. P. Thomas (Eds.),Handbook of perception and human performance: Vol. II. Cognitive processes and performance (pp. 31.1–31.41). New York: Wiley.Google Scholar
  32. Loring-Meier, S., &Halpern, D. F. (1999). Sex differences in visuospatial working memory: Components of cognitive processes.Psychonomic Bulletin & Review,6, 464–471.CrossRefGoogle Scholar
  33. Mann, V. A., Sasanuma, S., Sakuma, N., &Masaki, S. (1990). Sex differences in cognitive abilities: A cross-cultural perspective.Neuropsychologia,28, 1063–1077.CrossRefPubMedGoogle Scholar
  34. Marmor, G. S., &Zaback, L. A. (1976). Mental rotation by the blind: Does mental rotation depend on visual imagery?Journal of Experimental Psychology: Human Perception & Performance,2, 515–521.CrossRefGoogle Scholar
  35. Masters, M. S. (1998). The gender difference on the Mental Rotations Test is not due to performance factors.Memory & Cognition,26, 444–448.CrossRefGoogle Scholar
  36. Masters, M. S., &Sanders, B. (1993). Is the gender difference in mental rotation disappearing?Behavior Genetics,23, 337–341.CrossRefPubMedGoogle Scholar
  37. McWilliams, W., Hamilton, C. J., &Muncer, S. J. (1997). On mental rotation in three dimensions.Perceptual & Motor Skills,85, 297–298.CrossRefGoogle Scholar
  38. Newell, F. N., Ernst, M. O., Tjan, B. S., &Bülthoff, H. H. (2001). Viewpoint dependence in visual and haptic object recognition.Psychological Science,12, 37–42.CrossRefPubMedGoogle Scholar
  39. Oldfield, R. C. (1971). The assessment and analysis of handedness: The Edinburgh Inventory.Neuropsychologia,9, 97–117.CrossRefPubMedGoogle Scholar
  40. Parsons, L. M. (1995). Inability to reason about an object’s orientation using an axis and angle of rotation.Journal of Experimental Psychology: Human Perception & Performance,21, 1259–1277.CrossRefGoogle Scholar
  41. Peters, M., Laeng, B., Latham, K., Jackson, M., Zaiyouna, R., &Richardson, C. (1995). A redrawn Vandenberg and Kuse Mental Rotations Test: Different versions and factors affect performance.Brain & Cognition,28, 39–58.CrossRefGoogle Scholar
  42. Pezaris, E., &Casey, M. B. (1991). Girls who use “masculine” problem-solving strategies on a spatial task: Proposed genetic and environmental factors.Brain & Cognition,17, 1–22.CrossRefGoogle Scholar
  43. Prather, S. C., &Sathian, K. (2002). Mental rotation of tactile stimuli.Cognitive Brain Research,14, 91–98.CrossRefPubMedGoogle Scholar
  44. Proffitt, D. R., Bhalla, M., Gossweiler, R., &Midgett, J. (1995). Perceiving geographical slant.Psychonomic Bulletin & Review,2, 409–428.CrossRefGoogle Scholar
  45. Resnick, S. M. (1993). Sex differences in mental rotations: An effect of time limit?Brain & Cognition,21, 71–79.CrossRefGoogle Scholar
  46. Robert, M., & Longpré, S. (2002).Sensory and postural input in the occurrence of a gender difference in orienting liquid surfaces. Manuscript submitted for publication.Google Scholar
  47. Robert, M., Pelletier, J., St-Onge, R., &Berthiaume, F. (1994). Women’s deficiency in water-level representation: Present in visual conditions yet absent in haptic contexts.Acta Psychologica,87, 19–32.CrossRefPubMedGoogle Scholar
  48. Röder, B., Rösler, F., &Hennighausen, E. (1997). Different cortical activation patterns in blind and sighted humans during encoding and transformation of haptic images.Psychophysiology,34, 292–307.CrossRefPubMedGoogle Scholar
  49. Rösler, F., Röder, B., Heil, M., &Hennighausen, E. (1993). Topographic differences of slow event-related brain potentials in blind and sighted adult human subjects during haptic mental rotation.Cognitive Brain Research,1, 145–159.CrossRefPubMedGoogle Scholar
  50. Savoie, N., Robert, M., Chevrier, E., & Hélie, S. (2001, June).Are there gender differences in verbal and visuo-spatial working memory? Poster session presented at the annual meeting of the Canadian Society for Brain, Behaviour, and Cognitive Science, Quebec City.Google Scholar
  51. Schultz, K. (1991). The contribution of solution strategy to spatial performance.Canadian Journal of Psychology,45, 474–491.CrossRefGoogle Scholar
  52. Shepard, R. N., &Cooper, L. A. (1982).Mental images and their transformations. Cambridge, MA: MIT Press.Google Scholar
  53. Shepard, R. N., &Metzler, J. (1971). Mental rotation of three-dimensional objects.Science,171, 701–703.CrossRefPubMedGoogle Scholar
  54. Summers, D. C., &Lederman, S. J. (1990). Perceptual asymmetries in the somatosensory system: A dichhaptic experiment and critical review of the literature from 1929 to 1986.Cortex,26, 201–226.PubMedGoogle Scholar
  55. Suzuki, K., &Nakata, Y. (1988). Does the size of figures affect the rate of mental rotation?Perception & Psychophysics,44, 76–80.CrossRefGoogle Scholar
  56. Vandenberg, S. G., &Kuse, A. R. (1978). Mental rotations, a group test of three-dimensional spatial visualization.Perceptual & Motor Skills,47, 599–604.Google Scholar
  57. Vecchi, T., Phillips, L. H., &Cornoldi, C. (2001). Individual differences in visuo-spatial memory. In M. Denis, R. H. Logie, M. de Vega, & J. Emmelkamp (Eds.),Imagery, language, and visuo-spatial thinking (pp. 29–58). Hove, U.K.: Psychology Press.Google Scholar
  58. Voyer, D. (1997). Scoring procedure, performance factors, and magnitude of sex differences in spatial performance.American Journal of Psychology,110, 259–276.CrossRefPubMedGoogle Scholar
  59. Voyer, D. (2001, June).The effect of performance factors on sex differences in paper-and-pencil tests of mental rotation: A meta-analysis. Paper presented at the meeting of the Canadian Society for Brain, Behavior, and Cognitive Science, Quebec City.Google Scholar
  60. Voyer, D., Voyer, S. D., &Bryden, M. P. (1995). Magnitude of sex differences in spatial abilities: A meta-analysis and consideration of critical variables.Psychological Bulletin,117, 250–270.CrossRefPubMedGoogle Scholar
  61. Walker, J. T. (1972). Tactual field dependence.Psychonomic Science,26, 311–313.Google Scholar

Copyright information

© Psychonomic Society, Inc. 2003

Authors and Affiliations

  1. 1.Département de psychologieUniversité de MontréalMontréalCanada

Personalised recommendations