Animal Learning & Behavior

, Volume 31, Issue 2, pp 165–172 | Cite as

Taste avoidance and taste aversion: Evidence for two different processes

Article

Abstract

The termsconditioned taste avoidance andconditioned taste aversion are often used interchangeably in the literature; however, considerable evidence indicates that they may represent different processes. Conditioned taste avoidance is measured by the amount that a rat consumes in a consumption test that includes both appetitive phases and consummatory phases of responding. However, conditioned taste aversion is more directly assessed with the taste reactivity test, which includes only the consummatory phase of responding. Rats display a conditioned taste aversion as conditioned rejection reactions (gapes, chin rubs, and paw treads) during an intraoral infusion of a nausea-paired flavored solution. Treatments that produce nausea are not necessary for the establishment of taste avoidance, but they are necessary for the establishment of taste aversion. Furthermore, treatments that alleviate nausea modulate neither the establishment nor the expression of taste avoidance, but they interfere with both the establishment and the expression of taste aversion. Considerable evidence exists indicating that these two measures are independent of one another. Taste avoidance may be motivated by conditioned fear rather than conditioned nausea, but taste aversion (as reflected by rejection reactions) may be motivated by conditioned nausea.

References

  1. Balleine, B. W., Garner, C., &Dickinson, A. (1995). Instrumental outcome devaluation is attenuated by the anti-emetic ondansetron.Quarterly Journal of Experimental Psychology,48B, 235–251.Google Scholar
  2. Barr, G. A., Paredes, W., &Bridger, W. H. (1985). Place conditioning with morphine and phencyclidine: Dose dependent effects.Life Sciences,36, 363–368.CrossRefPubMedGoogle Scholar
  3. Beach, H. D. (1957). Morphine addiction in rats.Canadian Journal of Psychology,11, 105–112.Google Scholar
  4. Berger, B. D. (1972). Conditioning of food aversions by injections of psychoactive drugs.Journal of Comparative & Physiological Psychology,81, 21–26.CrossRefGoogle Scholar
  5. Berridge, K. C., Grill, H. J., &Norgren, R. (1981). Relation of consummatory responses and preabsorptive insulin release to palatability and learned taste aversions.Journal of Comparative & Physiological Psychology,95, 363–382.CrossRefGoogle Scholar
  6. Best, M., Best, P., &Mickley, G. (1973). Conditioned aversion to distinct environmental stimuli resulting from gastrointestinal distress.Journal of Comparative & Physiological Psychology,85, 250–257.CrossRefGoogle Scholar
  7. Bisogno, T., Hanus, L., De Petrocellis, L., Tchilibon, S., Ponde, D. E., Brandi, I., Moriello, A. S., Davis, J. B., Mechoulam, R., &Di Marzo, V. (2001). Molecular targets for cannabidiol and its synthetic analogues: Effect on vanilloid VR1 receptors and on the cellular uptake and enzymatic hydrolysis of anandamide.British Journal of Pharmacology,134, 845–852.CrossRefPubMedGoogle Scholar
  8. Blackshaw, L. A., &Grundy, D. (1993). Effects of 5-hydroxytryptamine on discharge of vagal mucosal afferent fibres from the upper gastrointestinal tract of the ferret.Journal of the Autonomic Nervous System,45, 41–50.CrossRefPubMedGoogle Scholar
  9. Bossert, J. M., &Franklin, K. B. (2001). Pentobarbital-induced place preference in rats is blocked by GABA, dopamine and opioid antagonists.Psychopharmacology,157, 115–122.CrossRefPubMedGoogle Scholar
  10. Coil, J. D., Hankins, W. G., Jenden, D. J., &Garcia, J. (1978). The attenuation of a specific cue-to-consequence association by antiemetic agents.Psychopharmacology,56, 21–25.CrossRefPubMedGoogle Scholar
  11. Cordick, N., Parker, L. A., &Ossenkopp, K. P. (1999). Rotation-induced conditioned rejection in the taste reactivity test.NeuroReport,10, 1157–1159.CrossRefGoogle Scholar
  12. Costello, N. L., Carlson, J. N., Glick, S. D., &Bryda, M. (1989). Dose-dependent and baseline-dependent conditioning withdamphetamine in the place conditioning paradigm.Psychopharmacology,99, 244–247.CrossRefPubMedGoogle Scholar
  13. Cromwell, H. C., &Berridge, K. C. (1993). Where does damage lead to enhanced food aversion: The ventral pallidum/substantia innominata or lateral hypothalamus?Brain Research,624, 1–110.CrossRefPubMedGoogle Scholar
  14. Cubero, I., Thiele, T. E., &Bernstein, I. L. (1999). Insular cortex lesions and taste aversion learning: Effects of conditioning method and timing of lesion.Brain Research,839, 323–330.CrossRefPubMedGoogle Scholar
  15. Cunningham, C. L. (1979). Flavor and location aversions produced by ethanol.Behavioral & Neural Biology,27, 362–367.CrossRefGoogle Scholar
  16. Cunningham, C. L., &Noble, D. (1992). Methamphetamine-induced conditioned place preference or aversion depending on dose and presence of drug. In P. B. Kalivas & H. W. Samson (Eds.),The neurobiology of drug and alcohol addiction (Annals of the New York Academy of Sciences, Vol. 654, pp. 431–433). New York: New York Academy of Sciences.Google Scholar
  17. Davies, A. M., &Parker, L. A. (1993). Fenfluramine-induced place aversion in a three-choice apparatus.Pharmacology, Biochemistry & Behavior,44, 595–600.CrossRefGoogle Scholar
  18. Davies, B. T., &Parker, L. A. (1990). Novel versus familiar ethanol: A comparison of aversive and rewarding properties.Alcohol,7, 523–529.CrossRefPubMedGoogle Scholar
  19. Davis, C. J., Harding, R. K., Leslie, R. A., &Andrews, P. L. R. (1986). The organisation of vomiting as a protective reflex. In C. J. Davis, G. V. Lake-Bakaar, & D. G. Grahame-Smith (Eds.),Nausea and vomiting: Mechanisms and treatment (pp. 65–75). Berlin: Springer-Verlag.Google Scholar
  20. Domjan, M. (1998).The principles of learning and behavior (4th ed.). Pacific Grove, CA: Brooks/Cole.Google Scholar
  21. Gadusek, F. J., &Kalat, J. W. (1975). Effects of scopolamine on retention of taste-aversion learning in rats.Physiological Psychology,3, 130–132.Google Scholar
  22. Gamzu, E. (1977). The multifaceted nature of taste aversion inducing agents: Is there a single common factor? In L. Barker, M. Domjan, & M. Best (Eds.),Learning mechanisms of food selection (pp. 447–511). Waco, TX: Baylor University Press.Google Scholar
  23. Garcia, J. (1989). Food for Tolman: Cognition and cathexis in concert. In T. Archer & L.-G. Nilsson (Eds.),Aversion, avoidance and anxiety (pp. 45–85). Hillsdale, NJ: Erlbaum.Google Scholar
  24. Garcia, J., Hankins, W. G., &Rusiniak, K. W. (1974). Behavioral regulation of the milieu interne in man and rat.Science,185, 824–831.CrossRefPubMedGoogle Scholar
  25. Garcia, J., &Koelling, R. A. (1966). Relation of cue to consequence in avoidance learning.Psychonomic Science,4, 123–124.Google Scholar
  26. Goudie, A. J., Stolerman, I. P., Demellweek, C., &D’Mello, G. D. (1982). Does conditioned nausea mediate drug-induced conditioned taste aversion?Psychopharmacology,78, 277–282.CrossRefPubMedGoogle Scholar
  27. Grant, V. L. (1987). Do conditioned taste aversions result from activation of emetic mechanisms?Psychopharmacology,93, 405–415.CrossRefPubMedGoogle Scholar
  28. Grigson, P. S. (1997). Conditioned taste aversions and drugs of abuse: A reinterpretation.Behavioral Neuroscience,111, 129–136.CrossRefPubMedGoogle Scholar
  29. Grill, H. C., &Norgren, R. (1978). The taste reactivity test: I. Mimetic responses to gustatory stimuli in neurologically normal rats.Brain Research,143, 263–279.CrossRefPubMedGoogle Scholar
  30. Grundy, D. (1998, June).Visceral afferents and their modulation in animal models of nausea and vomiting. Paper presented at the International Symposium on Nausea and Vomiting: A multidisciplinary approach. Tutzing, Germany.Google Scholar
  31. Higgins, G. A., Kilpatrick, G. J., Bunce, K. T., Jones, B. J., &Tyers, M. B. (1989). 5-HT3 receptor antagonists injected into the area postrema inhibit cisplatin-induced emesis in the ferret.British Journal of Pharmacology,97, 247–255.PubMedGoogle Scholar
  32. Hunt, T., &Amit, Z. (1987). Conditioned taste aversion induced by self-administered drugs: Paradox revisited.Neuroscience & Biobehavioral Reviews,11, 107–130.CrossRefGoogle Scholar
  33. Jorenby, D. E., Steinpreis, R. E., Sherman, J. E., &Baker, T. B. (1990). Aversion instead of preference learning indicated by nicotine place conditioning in rats.Psychopharmacology,101, 533–538.CrossRefPubMedGoogle Scholar
  34. Konorski, J. (1967).Integrative activity of the brain: An interdisciplinary approach. Chicago: University of Chicago Press.Google Scholar
  35. Levy, C. J., Carroll, M. E., Smith, J. C., &Hofer, K. G. (1974). Antihistamines block radiation-induced taste aversions.Science,186, 1044–1045.CrossRefPubMedGoogle Scholar
  36. Lew, G., &Parker, L. A. (1998). Pentobarbital-induced place aversion learning.Animal Learning & Behavior,26, 219–224.Google Scholar
  37. Limebeer, C. L., &Parker, L. A. (1999). Delta-9-tetrahydrocannabinol interferes with the establishment and the expression of conditioned rejection reactions produced by cyclophosphamide: A rat model of nausea.NeuroReport,10, 3769–3772.CrossRefPubMedGoogle Scholar
  38. Limebeer, C. L., &Parker, L. A. (2000). Ondansetron interferes with lithium-induced conditioned rejection reactions, but not lithiuminduced taste avoidance.Journal of Experimental Psychology: Animal Behavior Processes,26, 371–384.CrossRefPubMedGoogle Scholar
  39. Malfait, A. M., Gallily, R., Sumariwalla, P. F., Malik, A. S., Andreakos, E., Mechoulam, R., &Feldmann, M. (2000). The nonpsychoactive cannabis constituent cannabidiol is an oral antiarthritic therapeutic in murine collagen-induced arthritis.Proceedings of the National Academy of Sciences,97, 9561–9566.CrossRefGoogle Scholar
  40. Mallet, P. E., &Beninger, R. J. (1998). D-9-tetrahydrocannabinol, but not the endogenous cannabinoid receptor ligand anandamide, produces conditioned place avoidance.Life Sciences,62, 2431–2439.CrossRefPubMedGoogle Scholar
  41. Martin-Iverson, M. T., Ortmann, R., &Fibiger, H. C. (1985). Place preference conditioning with methylphenidate and nomifensine.Brain Research,332, 59–67.CrossRefPubMedGoogle Scholar
  42. Mayer, L. A., &Parker, L. A. (1993). Rewarding and aversive properties of IP versus SC cocaine: Assessment by place and taste conditioning.Psychopharmacology,112, 189–194.CrossRefPubMedGoogle Scholar
  43. MCDonald, R. V., Parker, L. A., &Siegel, S. (1997). Conditioned sucrose aversions produced by naloxone-precipitated withdrawal from acutely administered morphine.Pharmacology, Biochemistry & Behavior,58, 1003–1007.CrossRefGoogle Scholar
  44. Mechoulam, R. (1970). Marihuana chemistry.Science,168, 1159–1163.CrossRefPubMedGoogle Scholar
  45. Mucha, R. F., van der Kooy, D., O’Shaughnessy, M., &Bucenieks, P. (1982). Drug reinforcement studied by the use of place conditioning in the rat.Brain Research,243, 91–105.CrossRefPubMedGoogle Scholar
  46. Ossenkopp, K.-P., Parker, L. A., Limebeer, C. L., Burton, P., Fudge, M. L., &Cross-Mellor, S. K. (2003). Vestibular lesions selectively abolish rotation-induced, but not lithium-induced, conditioned taste aversions (oral rejection responses) in rats.Behavioral Neuroscience,117, 105–114.CrossRefPubMedGoogle Scholar
  47. Parker, L. A. (1982). Nonconsummatory and consummatory behavioral CRs elicited by lithium- and amphetamine-paired flavors.Learning & Motivation,13, 281–303.CrossRefGoogle Scholar
  48. Parker, L. A. (1984). Behavioral conditioned responses across multiple conditioning/testing trials elicited by lithium- and amphetamine-paired flavors.Behavioral & Neural Biology,41, 190–199.CrossRefGoogle Scholar
  49. Parker, L. A. (1988). Positively reinforcing drugs may produce a different kind of CTA than drugs which are not positively reinforcing.Learning & Motivation,19, 207–220.CrossRefGoogle Scholar
  50. Parker, L. A. (1991). Taste reactivity responses elicited by reinforcing drugs: A dose-response analysis.Behavioral Neuroscience,105, 955–964.CrossRefPubMedGoogle Scholar
  51. Parker, L. A. (1992). Place conditioning in a three- or four-choice apparatus: Role of stimulus novelty in drug-induced place conditioning.Behavioral Neuroscience,106, 294–307.CrossRefPubMedGoogle Scholar
  52. Parker, L. A. (1993). Taste reactivity responses elicited by cocaine-, phencyclidine-, and methamphetamine-paired sucrose solutions.Behavioral Neuroscience,107, 118–129.CrossRefPubMedGoogle Scholar
  53. Parker, L. A. (1995). Rewarding drugs produce taste avoidance, but not taste aversion.Neuroscience & Biobehavioral Reviews,19, 143–151.CrossRefGoogle Scholar
  54. Parker, L. A. (1996). LSD produces a place preference and taste avoidance, but does not produce taste aversion.Behavioral Neuroscience,109, 503–508.CrossRefGoogle Scholar
  55. Parker, L. A. (1998). Emetic drugs produce conditioned rejection reactions in the taste reactivity test.Journal of Psychophysiology,12, 3–13.Google Scholar
  56. Parker, L. A., &Brosseau, L. (1990). Apomorphine-induced flavordrug associations: A dose-response analysis by the taste reactivity test and the conditioned taste avoidance test.Pharmacology, Biochemistry & Behavior,35, 583–587.CrossRefGoogle Scholar
  57. Parker, L. A., Corrick, M. L., Limebeer, C. L., &Kwiatkowska, M. (2002). Amphetamine and morphine produce a conditioned taste and place preference in the house musk shrew (Suncus murinus).Journal of Experimental Psychology: Animal Behavior Processes,28, 75–82.CrossRefPubMedGoogle Scholar
  58. Parker, L. A., &Gillies, T. (1995). THC-induced place and taste aversions in Lewis and Sprague-Dawley rats.Behavioral Neuroscience,109, 71–78.CrossRefPubMedGoogle Scholar
  59. Parker, L. A., &Joshi, A. (1998). Naloxone-precipitated morphine withdrawal induced place aversion: Effects of naloxone at 24 hours postmorphine.Pharmacology, Biochemistry & Behavior,61, 331–333.CrossRefGoogle Scholar
  60. Parker, L. A., Limebeer, C., &Simpson, G. (1998). Chlordiazepoxideinduced conditioned place and taste aversion learning in rats.Pharmacology, Biochemistry & Behavior,59, 33–37.CrossRefGoogle Scholar
  61. Parker, L. A., &MCLeod, K. B. (1991). Chin rub CRs may reflect conditioned sickness elicited by a lithium-paired sucrose solution.Pharmacology, Biochemistry & Behavior,40, 983–986.CrossRefGoogle Scholar
  62. Parker, L. A., Mechoulam, R., &Schlievert, C. (2002). Cannabidiol, a non-psychoactive component of cannabis, and its synthetic dimethylheptyl homolog suppress nausea in an experimental model with rats.NeuroReport,13, 567–570.CrossRefPubMedGoogle Scholar
  63. Parker, L. A., Mechoulam, R., Schlievert, C., Abbott, L. A., Fudge, M. L., &Burton, P. (2003). Cannabinoid agonists attenuate and a cannabinoid antagonist potentiates lithium-induced conditioned rejection reactions in a rat model of nausea.Psychopharmacology,166, 156–162.PubMedGoogle Scholar
  64. Parker, L. A., &Rennie, M. (1992). Naltrexone-induced aversions: Assessment by the place conditioning taste reactivity and taste avoidance paradigms.Pharmacology, Biochemistry & Behavior,41, 559–565.CrossRefGoogle Scholar
  65. Pelchat, M. L., Grill, H. J., Rozin, P., &Jacobs, J. (1983). Quality of acquired responses to tastes byRattus norvegicus depends on type of associated discomfort.Journal of Comparative Psychology,97, 140–153.CrossRefPubMedGoogle Scholar
  66. Pelchat, M. L., &Rozin, P. (1982). The special role of nausea in the acquisition of food dislikes by humans.Appetite,3, 341–355.PubMedGoogle Scholar
  67. Rabin, B. M., &Hunt, W. A. (1983). Effects of antiemetics on the acquisition and recall of radiation and lithium chloride induced conditioned taste aversions.Pharmacology, Biochemistry & Behavior,18, 629–636.CrossRefGoogle Scholar
  68. Reicher, M. A., &Holman, E. W. (1977). Location preference and flavor aversion reinforced by amphetamine in rats.Animal Learning & Behavior,5, 343–346.Google Scholar
  69. Reid, L. D., Hunter, G. A., Beaman, C. M., &Hubbel, C. L. (1985). Toward understanding ethanol’s capacity to be reinforcing: A conditioned place preference following injections of ethanol.Pharmacology, Biochemistry & Behavior,22, 483–487.CrossRefGoogle Scholar
  70. Robinson, T. E., &Berridge, K. C. (1993). The neural basis of drug craving: An incentive-sensitization theory of addiction.Brain Research Reviews,18, 247–291.CrossRefPubMedGoogle Scholar
  71. Rudd, J. A., Ngan, M. P., &Wai, M. K. (1998). 5-HT3 receptors are not involved in conditioned taste aversions induced by 5-hydroxytryptamine, ipecacuanha or cisplatin.European Journal of Pharmacology,352, 143–149.CrossRefPubMedGoogle Scholar
  72. Schafe, G. E., Thiele, T. E., &Bernstein, I. L. (1998). Conditioning method dramatically alters the role of amygdala in taste aversion learning.Learning & Memory,5, 481–492.Google Scholar
  73. Schwartz, M. D., Jacobsen, P. B., &Bjovberg, D. H. (1996). Role of nausea in the development of aversions to a beverage paired with chemotherapy treatment in cancer patients.Physiology & Behavior,59, 659–663.CrossRefGoogle Scholar
  74. Smith, J. E., Friedman, M. I., &Andrews, P. L. R. (2001). Conditioned food aversion inSuncus murinus (house musk shrew): A new model for the study of nausea in a species with an emetic reflex.Physiology & Behavior,73, 593–598.CrossRefGoogle Scholar
  75. Smith, R., &Parker, L. A. (1985). Chin rub CRs are elicited by flavors paired with apomorphine, physostigmine, neostigmine, scopolamine and methylscopolamine.Pharmacology, Biochemistry & Behavior,23, 583–589.CrossRefGoogle Scholar
  76. Travers, J. B., &Norgren, R. (1986). Electromyographic analysis of the ingestion and rejection of spid stimuli in the rat.Behavioral Neuroscience,100, 544–555.CrossRefPubMedGoogle Scholar
  77. Wise, R., Yokel, P., &DeWitt, H. (1976). Both positive reinforcement and conditioned aversion from amphetamine and from apomorphine in rats.Science,191, 1273–1274.CrossRefPubMedGoogle Scholar
  78. Zalaquett, C., &Parker, L. A. (1989). Further evidence that CTAs produced lithium and amphetamine are qualitatively different.Learning & Motivation,20, 413–427.CrossRefGoogle Scholar

Copyright information

© Psychonomic Society, Inc. 2003

Authors and Affiliations

  1. 1.Department of PsychologyWilfrid Laurier UniversityWaterlooCanada

Personalised recommendations