Animal Learning & Behavior

, Volume 31, Issue 2, pp 133–142 | Cite as

A bottlenose dolphin discriminates visual stimuli differing in numerosity

  • Annette Kilian
  • Sevgi Yaman
  • Lorenzo von Fersen
  • Onur Güntürkün
Article

Abstract

A bottlenose dolphin was trained to discriminate two simultaneously presented stimuli differing in numerosity (defined by the number of constituent elements). After responding correctly to stimuli consisting of three-dimensional objects, the dolphin transferred to two-dimensional stimuli. Initially, a variety of stimulus parameters covaried with the numerosity feature. By systematically controlling for these stimulus parameters, it was demonstrated that some of these attributes, such as element configuration and overall brightness, affected the animal’s discrimination performance. However, after all the confounding parameters were under control, the dolphin was able to discriminate the stimuli exclusively on the basis of the numerosity feature. The animal then achieved a successful transfer to novel numerosities, both intervening numerosities and numerosities outside the former range. These findings provide substantial evidence that the dolphin could base his behavior on the numerosity of a set independently of its other attributes and that he represented ordinal relations among numerosities.

References

  1. Bauer, G. B., &Johnson, C. M. (1994). Trained motor imitation by bottlenose dolphins (Tursiops truncatus).Perceptual & Motor Skills,79, 1307–1315.Google Scholar
  2. Boysen, S. T. (1993). Counting in chimpanzees: Nonhuman principles and emergent properties of number. In S. T. Boysen & E. J. Capaldi (Eds.),The development of numerical competence: Animal and human models (pp. 39–59). Hillsdale, NJ: Erlbaum.Google Scholar
  3. Boysen, S. T., &Capaldi, E. J. (1993).The development of numerical competence: Animal and human models. Hillsdale, NJ: Erlbaum.Google Scholar
  4. Brannon, E. M., &Terrace, H. S. (1998). Ordering of the numerosities 1 to 9 by monkeys.Science,282, 746–749.CrossRefPubMedGoogle Scholar
  5. Breukelaar, J. W. C., &Dalrymple-Alford, J. C. (1998). Timing ability and numerical competence in rats.Journal of Experimental Psychology: Animal Behavior Processes,24, 84–97.CrossRefPubMedGoogle Scholar
  6. Clearfield, M. W., &Mix, K. S. (1999). Number versus contour length in infants’ discrimination of small visual sets.Psychological Science,10, 408–411.CrossRefGoogle Scholar
  7. Clearfield, M. W., &Mix, K. S. (2001). Amount versus number: Infants’ use of area and contour length to discriminate small sets.Journal of Cognition & Development,2, 243–260.CrossRefGoogle Scholar
  8. Davis, H., &Bradford, S. A. (1986). Counting behavior by rats in a simulated natural environment.Ethology,73, 265–280.CrossRefGoogle Scholar
  9. Davis, H., &Memmott, J. (1982). Counting behavior in animals: A critical evaluation.Psychological Bulletin,92, 547–571.CrossRefGoogle Scholar
  10. Davis, H., &Perusse, R. (1988). Numerical competence in animals: Definitional issues, current evidence, and a new research agenda.Behavioral & Brain Sciences,11, 561–615.CrossRefGoogle Scholar
  11. Dawson, B. V. (1961). Counting in jackdaws.Behaviour,18, 229–238.CrossRefGoogle Scholar
  12. Dawson, W. W. (1980). The cetacean eye. In L. M. Herman (Ed.),Cetacean behavior: Mechanisms and functions (pp. 53–100). New York: Wiley.Google Scholar
  13. Dehaene, S. (1997).The number sense: How the mind creates mathematics. Oxford: Oxford University Press.Google Scholar
  14. Emmerton, J., Lohmann, A., &Niemann, J. (1997). Pigeons’ serial ordering of numerosity with visual arrays.Animal Learning & Behavior,25, 234–244.Google Scholar
  15. Fellows, B. J. (1967). Chance stimulus sequences for discrimination tasks.Psychological Bulletin,67, 87–92.CrossRefPubMedGoogle Scholar
  16. Fetterman, J. G. (1993). Numerosity discrimination: Both time and number matter.Journal of Experimental Psychology: Animal Behavior Processes,19, 149–164.CrossRefPubMedGoogle Scholar
  17. Forestell, P. H., &Herman, L. M. (1988). Delayed matching of visual materials by a bottlenosed dolphin aided by auditory symbols.Animal Learning & Behavior,16, 137–146.Google Scholar
  18. Gallistel, C. R. (1990).The organization of learning. Cambridge, MA: MIT Press.Google Scholar
  19. Gallistel, C. R., &Gelman, R. (1992). Preverbal and verbal counting and computation.Cognition,44, 43–74.CrossRefPubMedGoogle Scholar
  20. Hauser, M. D., MacNeilage, P., &Hauser, L. B. (2000). Spontaneous number representation in semi-free-ranging rhesus monkeys.Proceedings of the Royal Society of London,267, 829–833.CrossRefGoogle Scholar
  21. Herman, L. M. (1986). Cognition and language competencies of bottlenosed dolphins. In R. J. Schusterman, J. A. Thomas, & F. G. Woods (Eds.),Dolphin cognition and behavior: A comparative approach (pp. 221–252). Hillsdale, NJ: Erlbaum.Google Scholar
  22. Herman, L. M. (1990). Cognitive performance of dolphins in visuallyguided tasks. In J. Thomas & R. Kastelein (Eds.),Sensory abilities of cetaceans (pp. 455–462). New York: Plenum.Google Scholar
  23. Herman, L. M., &Gordon, J. A. (1974). Auditory delayed matching in the bottlenosed dolphin.Journal of the Experimental Analysis of Behavior,21, 19–26.CrossRefPubMedGoogle Scholar
  24. Herman, L. M., Hovancik, J. R., Gory, J. D., &Bradshaw, G. L. (1989). Generalization of visual matching by a bottlenosed dolphin (Tursiops truncatus): Evidence for invariance of cognitive performance with visual or auditory materials.Journal of Experimental Psychology: Animal Behavior Processes,15, 124–136.CrossRefGoogle Scholar
  25. Herman, L. M., Morrel-Samuels, P., &Pack, A. A. (1990). Bottlenosed dolphin and human recognition of veridical and degraded video displays of an artificial gestural language.Journal of Experimental Psychology: General,119, 215–230.CrossRefGoogle Scholar
  26. Koehler, O. (1937). Können Tauben “zählen”? [Can pigeons “count”?]Zeitschrift für Tierpsychologie,1, 39–48.CrossRefGoogle Scholar
  27. Koehler, O. (1943). “Zähl” Versuche an einem Kolkraben und Vergleichsversuche an Menschen [“Counting” study with a raven and comparative research with people].Zeitschrift für Tierpsychologie,5, 575–712.CrossRefGoogle Scholar
  28. Lenneberg, E. H. (1971). Of language, knowledge, apes, and brains.Journal of Psycholingual Research,1, 1–29.CrossRefGoogle Scholar
  29. Meck, W. H., &Church, R. M. (1983). A mode control model of counting and timing processes.Journal of Experimental Psychology: Animal Behavior Processes,9, 320–334.CrossRefPubMedGoogle Scholar
  30. Meck, W. H., &Church, R. M. (1984). Simultaneous temporal processing.Journal of Experimental Psychology: Animal Behavior Processes,10, 1–29.CrossRefPubMedGoogle Scholar
  31. Mitchell, R. W., Yao, P., Sherman, P. T., &O’Regan, M. (1985). Discriminative responding of a dolphin (Tursiops truncatus) to differentially rewarded stimuli.Journal of Comparative Psychology,99, 218–225.CrossRefGoogle Scholar
  32. Olthof, A., Iden, C. M., &Roberts, W. A. (1997). Judgements of ordinality and summation of number symbols by squirrel monkeys (Saimiri sciureus).Journal of Experimental Psychology: Animal Behavior Processes,23, 325–339.CrossRefPubMedGoogle Scholar
  33. Pack, A. A., &Herman, L. M. (1995). Sensory integration in the bottlenosed dolphin: Immediate recognition of complex shapes across the senses of echolocation and vision.Journal of the Acoustical Society of America,98, 722–733.CrossRefPubMedGoogle Scholar
  34. Pepperberg, I. M. (1987). Evidence for conceptual quantitative abilities in the African grey parrot: Labeling of cardinal sets.Ethology,75, 37–61.CrossRefGoogle Scholar
  35. Rilling, M. (1993). Invisible counting animals: A history of contributions from comparative psychology, ethology, and learning theory. In S. T. Boysen & E. J. Capaldi (Eds.),The development of numerical competence: Animal and human models (pp. 3–37). Hillsdale, NJ: Erlbaum.Google Scholar
  36. Roitblat, H. L., Penner, R. H., &Nachtigall, P. E. (1990). Matchingtosample by an echolocating dolphin (Tursiops truncatus).Journal of Experimental Psychology: Animal Behavior Processes,16, 85–95.CrossRefPubMedGoogle Scholar
  37. Starkey, P., Spelke, E. S., &Gelman, R. (1983). Detection of intermodal numerical correspondences by human infants.Science,222, 179–181.CrossRefPubMedGoogle Scholar
  38. Strauss, M. S., &Curtis, L. E. (1981). Infant perception of numerosity.Child Development,52, 1146–1152.CrossRefPubMedGoogle Scholar
  39. Thomas, R. K., Fowlkes, D., &Vickery, J. D. (1980). Conceptual numerousness judgements by squirrel monkeys.American Journal of Psychology,93, 247–257.CrossRefPubMedGoogle Scholar
  40. Washburn, D. A., &Rumbaugh, D. M. (1991). Ordinal judgements of numerical symbols by macaques (Macaca mulatta).Psychological Science,2, 190–193.CrossRefPubMedGoogle Scholar
  41. Xia, L., Emmerton, J., Siemann, M., &Delius, J. D. (2001). Pigeons (Columba livia) learn to link numerosities with symbols.Journal of Comparative Psychology,115, 83–91.CrossRefPubMedGoogle Scholar
  42. Xu, F., &Spelke E. S. (2000). Large number discrimination in 6- month-old infants.Cognition,74, B1-B11.CrossRefPubMedGoogle Scholar

Copyright information

© Psychonomic Society, Inc. 2003

Authors and Affiliations

  • Annette Kilian
    • 1
    • 2
  • Sevgi Yaman
    • 1
    • 3
  • Lorenzo von Fersen
    • 2
  • Onur Güntürkün
    • 1
  1. 1.Ruhr-Universität BochumBochumGermany
  2. 2.Tiergarten NürnbergNürnbergGermany
  3. 3.Marineland MallorcaMallorcaSpain

Personalised recommendations