Memory & Cognition

, Volume 34, Issue 8, pp 1704–1719 | Cite as

Location and binding in visual working memory

  • Anne Treisman
  • Weiwei Zhang


Visual working memory (VWM) was explored separately for features and for their binding. Features were better recognized when the probes retained the same binding as in the original display, but changing the locations had little effect overall. However, there were strong interactions of location with binding and with matching or new features, suggesting that, when objects are attended, features and locations are spontaneously integrated in VWM. Despite this, when the locations are changed, features can also be accessed with little decrement, perhaps from separate feature maps. Bindings, on the other hand, are more vulnerable to location changes, suggesting that locations play a central role in the early maintenance and retrieval of bound objects as well as in their initial encoding, at least when verbal coding is prevented. The results qualify past claims about the separation of locations and objects in VWM.


Visual Working Memory Probe Type Articulatory Suppression Single Probe Object File 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Baddeley, A. (1992). Is working memory working? The fifteenth Bartlett lecture.Quarterly Journal of Experimental Psychology,44B, 1–31.Google Scholar
  2. Brainard, D. H. (1997). The Psychophysics Toolbox.Spatial Vision,10, 433–436.CrossRefPubMedGoogle Scholar
  3. Carlesimo, G. A., &Oscar-Berman, M. (1992). Memory deficits in Alzheimer’s patients: A comprehensive review.Neuropsychology Review,3, 119–169.CrossRefPubMedGoogle Scholar
  4. Carlesimo, G. A., Perri, R., Turriziani, P., Tomaiuolo, F., &Caltagirone, C. (2001). Remembering what but not where: Independence of spatial and visual working memory in the human brain.Cortex,37, 519–534.CrossRefPubMedGoogle Scholar
  5. Coltheart, M. (1980). Iconic memory and visible persistence.Perception & Psychophysics,27, 183–228.Google Scholar
  6. Coltheart, M. (1981). The MRC psycholinguistic database.Quarterly Journal of Experimental Psychology,33A, 497–505.Google Scholar
  7. Courtney, S. M., Ungerleider, L. G., Keil, K., &Haxby, J. V. (1996). Object and spatial visual working memory activate separate neural systems in human cortex.Cerebral Cortex,6, 39–49.CrossRefPubMedGoogle Scholar
  8. di Lollo, V. (1980). Temporal integration in visual memory.Journal of Experimental Psychology: General,109, 75–97.CrossRefGoogle Scholar
  9. Hanley, J. R., Young, A. W., &Pearson, N. A. (1991). Impairment of the visuo-spatial sketch pad.Quarterly Journal of Experimental Psychology,43A, 101–125.Google Scholar
  10. Haxby, J. V., Petit, L., Ungerleider, L. G., &Courtney, S. M. (2000). Distinguishing the functional roles of multiple regions in distributed neural systems for visual working memory.NeuroImage,11, 145–156.CrossRefPubMedGoogle Scholar
  11. Hecker, R., &Mapperson, B. (1997). Dissociation of visual and spatial processing in working memory.Neuropsychologia,35, 599–603.CrossRefPubMedGoogle Scholar
  12. Hollingworth, A., &Henderson, J. M. (2002). Accurate visual memory for previously attended objects in natural scenes.Journal of Experimental Psychology: Human Perception & Performance,28, 113–136.CrossRefGoogle Scholar
  13. Irwin, D. E. (1992). Visual memory within and across fixations. In K. Rayner (Ed.),Eye movements and visual cognition: Scene perception and reading (pp. 146–165). New York: Springer-Verlag.Google Scholar
  14. Irwin, D. E., &Andrews, R. V. (1996). Integration and accumulation of information across saccadic eye movements. In T. Inui & J. L. McClelland (Eds.),Attention and performance XVI: Information integration in perception and communication (pp. 125–155). Cambridge, MA: MIT Press.Google Scholar
  15. Irwin, D. E., &Yeomans, J. M. (1986). Sensory registration and informational persistence.Journal of Experimental Psychology: Human Perception & Performance,12, 343–360.CrossRefGoogle Scholar
  16. Jiang, Y., Olson, I. R., &Chun, M. M. (2000). Organization of visual short-term memory.Journal of Experimental Psychology: Learning, Memory, & Cognition,26, 683–702.CrossRefGoogle Scholar
  17. Kahneman, D., Treisman, A., &Gibbs, B. (1992). The reviewing of object files: Object-specific integration of information.Cognitive Psychology,24, 175–219.CrossRefPubMedGoogle Scholar
  18. Logie, R. H., &Marchetti, C. (1991). Visuo-spatial working memory: Visual, spatial or central executive? In R. H. Logie & M. Denis (Eds.),Mental images in human cognition (pp. 105–115). Amsterdam: North-Holland.CrossRefGoogle Scholar
  19. Luck, S. J., &Vogel, E. K. (1997). The capacity of visual working memory for features and conjunctions.Nature,390, 279–281.CrossRefPubMedGoogle Scholar
  20. Magnussen, S. (2000). Low-level memory processes in vision.Trends in Neurosciences,23, 247–251.CrossRefPubMedGoogle Scholar
  21. Mottaghy, F. M., Gangitano, M., Sparing, R., Krause, B. J., &Pascual-Leone, A. (2002). Segregation of areas related to visual working memory in the prefrontal cortex revealed by rTMS.Cerebral Cortex,12, 369–375.CrossRefPubMedGoogle Scholar
  22. Munk, M. H. J., Linden, D. E. J., Muckli, L., Lanfermann, H., Zanella, F. E., Singer, W., &Goebel, R. (2002). Distributed cortical systems in visual short-term memory revealed by event-related functional magnetic resonance imaging.Cerebral Cortex,12, 866–876.CrossRefPubMedGoogle Scholar
  23. Nunn, J. A., Polkey, C. E., &Morris, R. G. (1998). Selective spatial memory impairment after right unilateral temporal lobectomy.Neuropsychologia,36, 837–848.CrossRefPubMedGoogle Scholar
  24. Pashler, H. (1988). Familiarity and visual change detection.Perception & Psychophysics,44, 369–378.Google Scholar
  25. Pelli, D. G. (1997). The VideoToolbox software for visual psychophysics: Transforming numbers into movies.Spatial Vision,10, 437–442.CrossRefPubMedGoogle Scholar
  26. Phillips, W. A. (1974). On the distinction between sensory storage and short-term visual memory.Perception & Psychophysics,16, 283–290.Google Scholar
  27. Postle, B. R., &D’Esposito, M. (1999). “What”—then—“where” in visual working memory: An event-related fMRI study.Journal of Cognitive Neuroscience,11, 585–597.CrossRefPubMedGoogle Scholar
  28. Postle, B. R., Stern, C., Rosen, B., &Corkin, S. (2000). An fMRI investigation of cortical contributions to spatial and nonspatial visual working memory.NeuroImage,11, 409–423.CrossRefPubMedGoogle Scholar
  29. Prabhakaran, V., Narayanan, K., Zhao, Z., &Gabrieli, J. D. E. (2000). Integration of diverse information in working memory within the frontal lobe.Nature Neuroscience,3, 85–90.CrossRefPubMedGoogle Scholar
  30. Rao, S. C., Rainer, G., &Miller, E. K. (1997). Integration of what and where in the primate prefrontal cortex.Science,276, 821–824.CrossRefPubMedGoogle Scholar
  31. Rizzuto, D. S., Mamelak, A. N., Sutherling, W. W., Fineman, I., &Andersen, R. A. (2005). Spatial selectivity in human ventrolateral prefrontal cortex.Nature Neuroscience,8, 415–417.PubMedGoogle Scholar
  32. Smith, E. E., Jonides, J., Koeppe, R. A., Awh, E., Schumacher, E. H., &Minoshima, S. (1995). Spatial versus object working memory: PET investigations.Journal of Cognitive Neuroscience,7, 337–356.CrossRefGoogle Scholar
  33. Stefurak, D. L., &Boynton, R. M. (1986). Independence of memory for categorically different colors and shapes.Perception & Psychophysics,39, 164–174.Google Scholar
  34. Treisman, A. [M.] (1977). Focused attention in the perception and retrieval of multidimensional stimuli.Perception & Psychophysics,22, 1–11.Google Scholar
  35. Treisman, A. M., &Gelade, G. (1980). A feature-integration theory of attention.Cognitive Psychology,12, 97–136.CrossRefPubMedGoogle Scholar
  36. Tresch, M. C., Sinnamon, H. M., &Seamon, J. G. (1993). Double dissociation of spatial and object visual memory: Evidence from selective interference in intact human subjects.Neuropsychologia,31, 211–219.CrossRefPubMedGoogle Scholar
  37. Vogel, E. K., Woodman, G. F., &Luck, S. J. (2006). The time course of consolidation in visual working memory.Journal of Experimental Psychology: Human Perception & Performance,32, 1436–1451.CrossRefGoogle Scholar
  38. Vuontela, V., Rämä, P., Raninen, A., Aronen, H. J., &Carlson, S. (1999). Selective interference reveals dissociation between memory for location and colour.NeuroReport,10, 2235–2240.CrossRefPubMedGoogle Scholar
  39. Wheeler, M. E., &Treisman, A. M. (2002). Binding in short-term visual memory.Journal of Experimental Psychology: General,131, 48–64.CrossRefGoogle Scholar
  40. Wilson, F. A., O’Scalaidhe, S. P., &Goldman-Rakic, P. S. (1993). Dissociation of object and spatial processing domains in primate prefrontal cortex.Science,260, 1955–1958.CrossRefPubMedGoogle Scholar
  41. Woodman, G. F., &Luck, S. J. (2004). Visual search is slowed when visuospatial working memory is occupied.Psychonomic Bulletin & Review,11, 269–274.Google Scholar
  42. Woodman, G. F., Vogel, E. K., &Luck, S. J. (2001). Visual search remains efficient when visual working memory is full.Psychological Science,12, 219–224. or]Woodman, G. F., Vogel, E. K., Luck, S. J., & Hollingworth, A. (2007).Is the same visual working memory store used to represent all visual objects? Manuscript in preparation.CrossRefPubMedGoogle Scholar
  43. Yeomans, J. M., &Irwin, D. E. (1985). Stimulus duration and partial report performance.Perception & Psychophysics,37, 163–169.Google Scholar
  44. Zimmer, H. D., Speiser, H. R., &Seidler, B. (2003). Spatio-temporal working-memory and short-term object-location tasks use different memory mechanisms.Acta Psychologica,114, 41–65.CrossRefPubMedGoogle Scholar

Copyright information

© Psychonomic Society, Inc. 2006

Authors and Affiliations

  1. 1.Department of PsychologyPrinceton UniversityPrinceton
  2. 2.University of IowaIowa City

Personalised recommendations