Perception & Psychophysics

, Volume 66, Issue 2, pp 328–341 | Cite as

Time perception with and without a concurrent nontemporal task

  • Nancy S. Hemmes
  • Bruce L. Brown
  • Chris N. Kladopoulos
Article

Abstract

Prospective time estimates were obtained from human subjects for stimulus durations ranging from 2 to 23 sec. Presence and absence of a concurrent nontemporal task was manipulated within subjects in three experiments. In addition, location of the task within temporal reproduction trials and psychophysical method were varied between groups in Experiments 2 and 3, respectively. For long-duration stimuli, the results of all three experiments conformed to results in the literature, showing a decrease in perceived duration under concurrent task conditions, in accord with attentional resource allocation models of timing. The effects of task location and psychophysical method on time estimates were also compatible with this analysis. However, psychophysical functions obtained under task conditions were fit well by power functions, an outcome that would not be anticipated on the basis of attention theory. The slopes of the functions under no-task conditions were steeper than those under task conditions. The data support the perceptual hypothesis that different sources of sensory input mediate timing under task and no-task conditions.

References

  1. Allan, L. G. (1983). Magnitude estimation of temporal intervals.Perception & Psychophysics,33, 29–42.CrossRefGoogle Scholar
  2. Allan, L. G., &Gibbon, J. (1991). Human bisection at the geometric mean.Learning & Motivation,22, 39–58.CrossRefGoogle Scholar
  3. Block, R. A. (1992). Prospective and retrospective duration judgement: The role of information processing and memory. In F. Macar, V. Pouthas, & W. J. Friedman (Eds.),Time, action, and cognition: Towards bridging the gap (pp. 141–152). Dordrecht: Kluwer.Google Scholar
  4. Block, R. A., &Zakay, D. (1996). Models of psychological time revisited. In H. Helfrich (Ed.),Time and mind (pp. 171–195). Seattle: Hogrefe & Huber.Google Scholar
  5. Brown, S.W. (1995). Time, change, and motion: The effects of stimulus movement on temporal perception.Perception & Psychophysics,57, 105–116.CrossRefGoogle Scholar
  6. Brown, S. W. (1997). Attentional resources in timing: Interference effects in concurrent temporal and nontemporal working memory tasks.Perception & Psychophysics,59, 1118–1140.CrossRefGoogle Scholar
  7. Brown, S. W., Stubbs, D. A., &West, A. N. (1992). Attention, multiple timing, and psychophysical scaling of temporal judgements. In F. Macar, V. Pouthas, & W. J. Friedman (Eds.),Time, action, and cognition: Towards bridging the gap (pp. 129–140). Dordrecht: Kluwer.Google Scholar
  8. Carlson, V. R., &Feinberg, I. (1968). Individual variations in time judgement and the concept of an internal clock.Journal of Experimental Psychology,77, 631–640.PubMedCrossRefGoogle Scholar
  9. Catania, A. C. (1970). Reinforcement schedules and psychophysical judgments: A study of some temporal properties of behavior. In W. N. Schoenfeld (Ed.),The theory of reinforcement schedules (pp. 1–42). New York: Appleton-Century-Crofts.Google Scholar
  10. Cheng, K., &Westwood, R. (1993). Analysis of single trials in pigeons’ timing performance.Journal of Experimental Psychology: Animal Behavior Processes,19, 56–67.CrossRefGoogle Scholar
  11. Cheng, K., Westwood, R., &Crystal, J. D. (1993). Memory variance in the peak procedure of timing in pigeons.Journal of Experimental Psychology: Animal Behavior Processes,19, 68–76.CrossRefGoogle Scholar
  12. Eisler, H. (1975). Subjective duration and psychophysics.Psychological Review,82, 429–450.PubMedCrossRefGoogle Scholar
  13. Eisler, H. (1976). Experiments on subjective duration 1868-1975: A collection of power function exponents.Psychological Bulletin,83, 1154–1171.PubMedCrossRefGoogle Scholar
  14. Eisler, H. (1996). Time perception from a psychophysicist’s perspective. In H. Helfrich (Ed.),Time and mind (pp. 65–86). Seattle: Hogrefe & Huber.Google Scholar
  15. Fetterman, J. G., &Killeen, P. R. (1990). A componential analysis of pacemaker-counter timing systems.Journal of Experimental Psychology: Human Perception & Performance,16, 766–780.CrossRefGoogle Scholar
  16. Fortin, C., &Rousseau, R. (1998). Interference from short-term memory processing on encoding and reproducing brief durations.Psychological Research,61, 269–276.PubMedCrossRefGoogle Scholar
  17. Fortin, C., Rousseau, R., Bourque, P., &Kirouac, E. (1993). Time estimation and concurrent nontemporal processing: Specific interference from short-term-memory demands.Perception & Psychophysics,53, 536–548.CrossRefGoogle Scholar
  18. Frankenhaeuser, M. (1959).Estimation of time: An experimental study. Stockholm: Almquist & Wiksell.Google Scholar
  19. Gibbon, J. (1991). Origins of scalar timing.Learning & Motivation,22, 3–38.CrossRefGoogle Scholar
  20. Gibbon, J., &Church, R. M. (1990). Representation of time.Cognition,37, 23–54.PubMedCrossRefGoogle Scholar
  21. Grondin, S., Meilleur-Wells, G., &Lachance, R. (1999). When to start explicit counting in a time-intervals discrimination task: A critical point in the timing process of humans.Journal of Experimental Psychology: Human Perception & Performance,25, 993–1004.CrossRefGoogle Scholar
  22. Hicks, R. E., Miller, G. W., Gaes, G., &Bierman, K. (1977). Concurrent processing demands and the experience of time-in-passing.American Journal of Psychology,90, 431–446.CrossRefGoogle Scholar
  23. Holm, S. (1979). A simple sequentially rejective multiple test procedure.Scandinavian Journal of Statistics,6, 65–70.Google Scholar
  24. Ivry, R. [B.], &Corcos, D. M. (1993). Slicing the variability pie: Component analysis of coordination and motor dysfunction. In K. M. Newell & D. M. Corcos (Eds.),Variability and motor control (pp. 415–447). Champaign, IL: Human Kinetics.Google Scholar
  25. Ivry, R. B., &Hazeltine, R. E. (1995). Perception and production of temporal intervals across a range of durations: Evidence for a common timing mechanism.Journal of Experimental Psychology: Human Perception & Performance,21, 3–18.CrossRefGoogle Scholar
  26. Killeen, P. R., &Taylor, T. J. (2000). How the propagation of error through stochastic counters affects time discrimination and other psychophysical judgments.Psychological Review,107, 430–459.PubMedCrossRefGoogle Scholar
  27. Killeen, P. R., &Weiss, N. A. (1987). Optimal timing and the Weber function.Psychological Review,94, 455–468.PubMedCrossRefGoogle Scholar
  28. Kladopoulos, C. N., Brown, B. L., Hemmes, N. S., &Cabeza de Vaca, S. (1998). The start-stoPprocedure: Estimation of temporal intervals by human subjects.Perception & Psychophysics,60, 438–450.CrossRefGoogle Scholar
  29. Kladopoulos, C. N., Hemmes, N. S., & Brown, B. L. (1997, April).The start-stoPprocedure: Effects of a concurrent nontemporal task. Paper presented at the annual meeting of the Eastern Psychological Association, Washington, DC.Google Scholar
  30. Lejeune, H. (1998). Switching or gating? The attentional challenge in cognitive models of psychological time.Behavioural Processes,44, 127–145.CrossRefGoogle Scholar
  31. Loftus, G. R., &Masson, M. E. J. (1994). Using confidence intervals in within-subject designs.Psychonomic Bulletin & Review,1, 476–490.CrossRefGoogle Scholar
  32. Luce, R. D., &Krumhansl, C. L. (1988). Measurement, scaling, and psychophysics. In R. C. Atkinson, R. J. Herrnstein, G. Lindzey, & R. D. Luce (Eds.),Stevens’ handbook of experimental psychology: Vol. 1. Perception and motivation (pp. 3–74). New York: Wiley.Google Scholar
  33. Macar, F., Grondin, S., &Casini, L. (1994). Controlled attention sharing influences time estimation.Memory & Cognition,22, 673–686.CrossRefGoogle Scholar
  34. Poulton, E. C. (1967). Population norms of toPsensory magnitudes and S. S. Stevens’ exponents.Perception & Psychophysics, 2, 312–316.CrossRefGoogle Scholar
  35. Poulton, E. C. (1968). The new psychophysics: Six models of magnitude estimation.Psychological Bulletin,69, 1–19.CrossRefGoogle Scholar
  36. Poynter, W. D. (1989). Judging the duration of time intervals: A process of remembering segments of experience. In I. Levin & D. Zakay (Eds.),Time and human cognition: A life span perspective (pp. 305–331). Amsterdam: Elsevier, North-Holland.CrossRefGoogle Scholar
  37. Poynter, W. D., &Homa, D. (1983). Duration judgment and the experience of change.Perception & Psychophysics,33, 548–560.CrossRefGoogle Scholar
  38. Rakitin, B. C., Gibbon, J., Penney, T. B., Malapani, C., Hinton, S. C., &Meck, W. H. (1998). Scalar expectancy theory and peak-interval timing in humans.Journal of Experimental Psychology: Animal Behavior Processes,24, 15–33.PubMedCrossRefGoogle Scholar
  39. Roberts, S. (1981). Isolation of an internal clock.Journal of Experimental Psychology: Animal Behavior Processes,7, 242–268.PubMedCrossRefGoogle Scholar
  40. Sawyer, T. F., Meyers, P. J., &Huser, S. J. (1994). Contrasting task demands alter the perceived duration of brief time intervals.Perception & Psychophysics,56, 649–657.CrossRefGoogle Scholar
  41. Staddon, J. E. R., &Higa, J. J. (1999). Time and memory: Towards a pacemaker-free theory of interval timing.Journal of the Experimental Analysis of Behavior,71, 215–251.PubMedCrossRefGoogle Scholar
  42. Stevens, S. S. (1957). On the psychophysical law.Psychological Review,64, 153–181.PubMedCrossRefGoogle Scholar
  43. Stevens, S. S. (1960). The psychophysics of sensory function.American Scientist,48, 226–253.Google Scholar
  44. Stevens, S. S. (1975). The psychophysical law. In G. Stevens (Ed.),Psychophysics: Introduction to its perceptual, neural, and social prospects (pp. 1–36). New York: Wiley.Google Scholar
  45. Stevens, S. S., &Greenbaum, H. B. (1966). Regression effect in psychophysical judgment.Perception & Psychophysics,1, 439–446.Google Scholar
  46. Teghtsoonian, R. (1971). On the exponents in Stevens’ law and the constant in Ekman’s law.Psychological Review,78, 71–80.PubMedCrossRefGoogle Scholar
  47. Thomas, E. A. C., &Brown, I., Jr. (1974). Time perception and the filled-duration illusion.Perception & Psychophysics,16, 449–458.CrossRefGoogle Scholar
  48. Thomas, E. A. C., &Weaver, W. B. (1975). Cognitive processing and time perception.Perception & Psychophysics,17, 363–367.CrossRefGoogle Scholar
  49. Treisman, M. (1963). Temporal discrimination and the indifference interval: Implications for a model of the “internal clock.”Psychological Monographs,77 (Whole No. 576).Google Scholar
  50. Vroon, P. A. (1970). Effects of presented and processed information on duration experience.Acta Psychologica,34, 115–121.CrossRefGoogle Scholar
  51. Wallace, M., &Rabin, A. (1960). Temporal experience.Psychological Bulletin,57, 213–236.PubMedCrossRefGoogle Scholar
  52. Wearden, J. H., Denovan, L., Fakhri, M., &Haworth, R. (1997). Scalar timing in temporal generalization in humans with longer stimulus durations.Journal of Experimental Psychology: Animal Behavior Processes,23, 502–511.PubMedCrossRefGoogle Scholar
  53. Woodrow, H. (1951). Time perception. In S. S. Stevens (Ed.),Handbook of experimental psychology (pp. 1224–1236). New York: Wiley.Google Scholar
  54. Woodworth, R. S., &Schlosberg, H. (1954).Experimental psychology. New York: Holt.Google Scholar
  55. Zakay, D. (1990). The evasive art of subjective time measurement: Some methodological dilemmas. In R. A. Block (Ed.),Cognitive models of psychological time (pp. 59–84). Hillsdale, NJ: Erlbaum.Google Scholar
  56. Zakay, D. (1993). Time estimation methods—do they influence prospective duration estimates?Perception,22, 91–101.PubMedCrossRefGoogle Scholar
  57. Zakay, D. (1998). Attention allocation policy influences prospective timing.Psychonomic Bulletin & Review,5, 114–118.CrossRefGoogle Scholar

Copyright information

© Psychonomic Society, Inc. 2004

Authors and Affiliations

  • Nancy S. Hemmes
    • 1
    • 2
  • Bruce L. Brown
    • 1
    • 2
  • Chris N. Kladopoulos
    • 1
    • 2
  1. 1.Department of PsychologyQueens College-CUNYFlushing
  2. 2.The Graduate CenterCity University of New YorkNew York

Personalised recommendations