Perception & Psychophysics

, Volume 66, Issue 1, pp 3–22 | Cite as

The scaling of spatial attention in visual search and its modification in healthy aging

Article
  • 369 Downloads

Abstract

A model of visual search (Greenwood & Parasuraman, 1999) postulating that visuospatial attention is composed of two processing components—shifting and scaling of a variable-gradient attentional focus—was tested in three experiments. Whereas young participants are able to dynamically constrict or expand the focus of visuospatial attention on the basis of prior information, in healthy aging individuals visuospatial attention becomes a poorly focused beam, unable to be constricted around one array element. In the present work, we sought to examine predictions of this view in healthy young and older participants. An attentional focus constricted in response to an element-sized precue had the strongest facilitatory effect on visual search. However, this was true only when the precue correctly indicated the location of a target fixed in size. When precues incorrectly indicated target location or when target size varied, the optimal spatial scale of attention for search was larger, encompassing a number of array elements. Healthy aging altered the deployment of attentional scaling: The benefit of valid precues on search initially (in participants 65-74 years of age) was increased but later (in those 75-85 years of age) was reduced. The results also provided evidence that cue size effects are attentional, not strategic. This evidence is consistent with the proposed model of attentional scaling in visual search.

References

  1. Braun, J., &Sagi, D. (1991). Texture-based tasks are little affected by second tasks requiring peripheral or central attentive fixation.Perception,20, 483–500.PubMedCrossRefGoogle Scholar
  2. Cabeza, R. (2002). Hemispheric asymmetry reduction in older adults: the HAROLD model.Psychology & Aging,17, 85–100.CrossRefGoogle Scholar
  3. Caggiano, D., Greenwood, P. M., & Parasuraman, R. (2001, April).Aging alters the role of saccades in attentional scaling effects on visual search. Paper presented at the meeting of the Cognitive Aging Society, Atlanta.Google Scholar
  4. Carter, J. E., Obler, L., Woodward, S., &Albert, M. L. (1983). The effect of increasing age on the latency for saccadic eye movements.Journals of Gerontology,38, 318–320.PubMedGoogle Scholar
  5. Castiello, U., &Umiltà, C. (1990). Size of the attentional focus and efficiency of processing.Acta Psychologica,73, 195–209.PubMedCrossRefGoogle Scholar
  6. Cave, K. R., &Bichot, N. P. (1999). Visuospatial attention: Beyond a spotlight model.Psychonomic Bulletin & Review,6, 204–223.Google Scholar
  7. Cave, K. R., &Wolfe, J. M. (1990). Modeling the role of parallel processing in visual search.Cognitive Psychology,22, 225–271.PubMedCrossRefGoogle Scholar
  8. Corbetta, M. (1998). Frontoparietal cortical networks for directing attention and the eye to visual locations: Identical, independent, or overlapping neural systems?Proceedings of the National Academy of Sciences,95, 831–838.CrossRefGoogle Scholar
  9. Davidson, M. C., &Marrocco, R. T. (2000). Local infusion of scopolamine into intraparietal cortex slows covert orienting in rhesus monkeys.Journal of Neurophysiology,83, 1536–1549.PubMedGoogle Scholar
  10. Desimone, R., &Duncan, J. (1995). Neural mechanisms of selective visual attention.Annual Review of Neuroscience,18, 192–222.CrossRefGoogle Scholar
  11. Diamond, M. R., Ross, J., &Morrone, M. C. (2000). Extraretinal control of saccadic suppression.Journal of Neuroscience,20, 3449–3455.PubMedGoogle Scholar
  12. Duncan, J., &Humphreys, G. W. (1989). Visual search and stimulus similarity.Psychological Review,96, 433–458.PubMedCrossRefGoogle Scholar
  13. Eriksen, C. W., &St. James, J. D. (1986). Visual attention within and around the field of focal attention: A zoom lens model.Perception & Psychophysics,40, 225–240.Google Scholar
  14. Faust, M. E., &Balota, D. A. (1997). Inhibition of return and visuospatial attention in healthy older adults and individuals with dementia of the Alzheimer type.Neuropsychology,11, 13–29.PubMedCrossRefGoogle Scholar
  15. Fink, G. R., Halligan, P. W., Marshall, J. C., Frith, C. D., Frackowiak, R. S., &Dolan, R. J. (1996). Where in the brain does visual attention select the forest and the trees?Nature,382, 626–628.PubMedCrossRefGoogle Scholar
  16. Fink, G. R., Halligan, P. W., Marshall, J. C., Frith, C. D., Frackowiak, R. S., &Dolan, R. J. (1997). Neural mechanisms involved in the processing of global and local aspects of hierarchically organized visual stimuli.Brain,120(Pt. 10), 1779–1791.PubMedCrossRefGoogle Scholar
  17. Gilbert, C., Ito, M., Kapadia, M., &Westheimer, G. (2000). Interactions between attention, context and learning in primary visual cortex.Vision Research,40, 1217–1226.PubMedCrossRefGoogle Scholar
  18. Gilchrist, I. D., Heywood, C. A., &Findlay, J. M. (1999). Saccade selection in visual search: Evidence for spatial frequency specific betweenitem interactions.Vision Research,39, 1373–1383.PubMedCrossRefGoogle Scholar
  19. Gottlob, L. R., &Madden, D. J. (1999). Age differences in the strategic allocation of visual attention.Journals of Gerontology,54, 165–172.Google Scholar
  20. Grady, C. L. (1998). Brain imaging and age-related changes in cognition.Experimental Gerontology,33, 661–673.PubMedCrossRefGoogle Scholar
  21. Greenwood, P. M. (2000). The frontal aging hypothesis evaluated.Journal of the International Neuropsychological Society,6, 705–726.PubMedCrossRefGoogle Scholar
  22. Greenwood, P. M., Alexander, G. E., & Parasuraman, R. (1999, Month).Progression in early Alzheimer disease increases costs but not benefits of cue validity in visuospatial attention. Paper presented at the meeting of the Society for Neuroscience, Miami, FL.Google Scholar
  23. Greenwood, P. M., &Parasuraman, R. (1994). Attentional disengagement deficit in nondemented elderly over 75 years of age.Aging & Cognition,1, 188–202.CrossRefGoogle Scholar
  24. Greenwood, P. M., &Parasuraman, R. (1999). Scale of attentional focus in visual search.Perception & Psychophysics,61, 837–859.Google Scholar
  25. Greenwood, P. M., Parasuraman, R., &Alexander, G. E. (1997). Controlling the focus of spatial attention during visual search: Effects of advanced aging and Alzheimer disease.Neuropsychology,11, 3–12.CrossRefGoogle Scholar
  26. Greenwood, P. M., Parasuraman, R., &Haxby, J. (1993). Changes in visuospatial attention over the adult lifespan.Neuropsychologia,31, 471–485.PubMedCrossRefGoogle Scholar
  27. Greenwood, P. M., Sunderland, T., Friz, J. L., &Parasuraman, R. (2000). Genetics and visual attention: Selective deficits in healthy adult carriers of the varepsilon 4 allele of the apolipoprotein E gene.Proceedings of the National Academy of Sciences,97, 11661–11666.CrossRefGoogle Scholar
  28. Hartley, A. A., Kieley, J., &McKenzie, C. R. M. (1992). Allocation of visual attention in younger and older adults.Perception & Psychophysics,52, 175–185.Google Scholar
  29. Hawkins, H. L., Hillyard, S. A., Luck, S. J., Mouloua, M., Downing, C. J., &Woodward, D. P. (1990). Visual attention modulates signal detectability.Journal of Experimental Psychology,16, 802–811.PubMedGoogle Scholar
  30. Intriligator, J., &Cavanagh, P. (2001). The spatial resolution of visual attention.Cognitive Psychology,43, 171–216.PubMedCrossRefGoogle Scholar
  31. Ito, M., &Gilbert, C. D. (1999). Attention modulates contextual influences in the primary visual cortex of alert monkeys.Neuron,22, 593–604.PubMedCrossRefGoogle Scholar
  32. James, W. (1981).The principles of psychology (Vol. 1). Cambridge, MA: Harvard University Press. (Original work published 1890)Google Scholar
  33. Jernigan, T. L., Archibald, S. L., Berhow, M. T., Sowell, E. R., Foster, D. S., &Hesselink, J. R. (1991). Cerebral structure on MRI: Pt. I. Localization of age-related changes.Biological Psychiatry,29, 55–67.PubMedCrossRefGoogle Scholar
  34. Kinchla, R. A., Chen, Z., &Evert, D. L. (1995). Precue effects in visual search: Data or resource limited?Perception & Psychophysics,57, 441–450.Google Scholar
  35. LaBerge, D., &Brown, V. (1989). Theory of attentional operations in shape identification.Psychological Review,96, 101–124.CrossRefGoogle Scholar
  36. LaBerge, D., Brown, V., Carter, M., Bash, D., &Hartley, A. (1991). Reducing the effects of adjacent distractors by narrowing attention.Journal of Experimental Psychology: Human Perception & Performance,17, 65–76.CrossRefGoogle Scholar
  37. LaBerge, D., Carlson, R. L., Williams, J. K., &Bunney, B. G. (1997). Shifting attention in visual space: Tests of moving-spotlight models versus an activity-distribution model.Journal of Experimental Psychology: Human Perception & Performance,23, 1380–1392.CrossRefGoogle Scholar
  38. Luck, S. J., &Hillyard, S. A. (1994). Spatial filtering during visual search: Evidence from human electrophysiology.Journal of Experimental Psychology: Human Perception & Performance,20, 1000–1014CrossRefGoogle Scholar
  39. Luo, Y. J., Greenwood, P. M., &Parasuraman, R. (2001). Dynamics of the spatial scale of visual attention revealed by brain event-related potentials.Cognitive Brain Research,12, 371–381.PubMedCrossRefGoogle Scholar
  40. Madden, D. J., &Gottlob, L. R. (1997). Adult age differences in strategic and dynamic components of focusing visual attiention.Aging, Neuropsychology, & Cognition,4, 185–210.CrossRefGoogle Scholar
  41. Madden, D. J., Pierce, T. W., &Allen, P. A. (1992). Adult age differences in attentional allocation during memory search.Psychology & Aging,7, 594–601.CrossRefGoogle Scholar
  42. Martin, A. J., Friston, K. J., Colebatch, J. G., &Frackowiak, R. S. J. (1991). Decreases in regional cerebral blood flow with normal aging.Journal of Cerebral Blood Flow & Metabolism,11, 684–689.Google Scholar
  43. Matin, E. (1974). Saccadic suppression: A review and an analysis.Psychological Bulletin,81, 899–917.PubMedCrossRefGoogle Scholar
  44. McElree, B., &Carrasco, M. (1999). The temporal dynamics of visual search: Evidence for parallel processing in feature and conjunction searches.Journal of Experimental Psychology: Human Perception & Performance,25, 1517–1539.CrossRefGoogle Scholar
  45. Moran, J., &Desimone, R. (1985). Selective attention gates visual processing in the extrastriate cortex.Science,229, 782–784.PubMedCrossRefGoogle Scholar
  46. Motter, B. C. (1993). Focal attention produces spatially selective processing in visual cortical areas V1, V2, and V4 in the presence of competing stimuli.Journal of Neurophysiology,70, 909–919.PubMedGoogle Scholar
  47. Motter, B. C. (1994). Neural correlates of feature selective memory and pop-out in extrastriate area V4.Journal of Neuroscience,14, 2190–2199.PubMedGoogle Scholar
  48. Motter, B. C., &Belky, E. J. (1998). The zone of focal attention during active visual search.Vision Research,38, 1007–1022.PubMedCrossRefGoogle Scholar
  49. MŸller, H. J., &Rabbitt, P. M. A. (1989). Reflexive and voluntary orienting of visual attention: Time course of activation and resistance to interruption.Journal of Experimental Psychology: Human Perception & Performance,15, 315–330.CrossRefGoogle Scholar
  50. Nakayama, K., &Makeben, M. (1989). Sustained and transient components of focal visual attention.Vision Research,29, 1631–1647.PubMedCrossRefGoogle Scholar
  51. Nobre, A. C., Sebestyen, G. N., Gitelman, D. R., Mesulam, M. M., Frackowiak, R. S., &Frith, C. D. (1997). Functional localization of the system for visuospatial attention using positron emission tomography.Brain,120, 515–533.PubMedCrossRefGoogle Scholar
  52. Noesselt, T., Hillyard, S. A., Woldorff, M. G., Schoenfeld, A., Hagner, T., Jancke, L., Tempelmann, C., Hinrichs, H., &Heinze, H. J. (2002). Delayed striate cortical activation during spatial attention.Neuron,35, 575–587.PubMedCrossRefGoogle Scholar
  53. Plude, D. J., &Doussard-Roosevelt, J. A. (1989). Aging, selective attention and feature integration.Psychology & Aging,4, 98–105.CrossRefGoogle Scholar
  54. Posner, M. I. (1980). Orienting of attention.Quarterly Journal of Experimental Psychology,32, 3–25.PubMedCrossRefGoogle Scholar
  55. Posner, M. I., Walker, J. A., Friderich, F. J., &Rafal, R. D. (1984). Effects of parietal injury on covert orienting of attention.Journal of Neuroscience,4, 1863–1874.PubMedGoogle Scholar
  56. Previc, F. H. (1995, April).Oculomotor behavior during visual search in humans. Paper presented at the meeting of Society for Neuroscience, San Diego.Google Scholar
  57. Prinzmetal, W., Presti, D. E., &Posner, M. I. (1986). Does attention affect visual feature integration?Journal of Experimental Psychology: Human Perception & Performance,12, 361–369.CrossRefGoogle Scholar
  58. Rabbitt, P., Diggle, P., Smith, D., Holland, F., &McInnes, L. (2001). Identifying and separating the effects of practice and of cognitive ageing during a large longitudinal study of elderly community residents.Neuropsychologia,39, 532–543.PubMedCrossRefGoogle Scholar
  59. Reiman, E. M., Caselli, R. J., Yun, L. S., Chen, K., Bandy, D., Minoshima, S., Thibodeau, S. N., &Osborne, D. (1996). Preclinical evidence of Alzheimer’s disease in persons homozygous for the epsilon 4 allele for apolipoprotein E.New England Journal of Medicine,334, 752–758.PubMedCrossRefGoogle Scholar
  60. Scialfa, C. T., Esau, S. P., &Joffe, K. M. (1998). Age, target-distractor similarity, and visual search.Experimental Aging Research,24, 337–358.PubMedCrossRefGoogle Scholar
  61. Shaw, M. L. (1984). Division of attention among spatial locations: A fundamental difference between detection of letters and detection of luminance increments. In H. Bouma & D. G. Bouwhuis (Eds.),Attention and performance X (pp. 109–120). Hillsdale, NJ: Erlbaum.Google Scholar
  62. Smith, C. D., Andersen, A. H., Kryscio, R. J., Schmitt, F. A., Kindy, M. S., Blonder, L. X., &Avison, M. J. (1999). Altered brain activation in cognitively intact individuals at high risk for Alzheimer’s disease.Neurology,53, 1391–1396.PubMedGoogle Scholar
  63. Theeuwes, J., Kramer, A. F., &Atchley, P. (1999). Attentional effects on preattentive vision: Spatial precues affect the detection of simple features.Journal of Experimental Psychology: Human Perception & Performance,25, 341–347.CrossRefGoogle Scholar
  64. Townsend, J. T., &Ashby, F. G. (1984).Stochastic modeling of elementary psychological processing. New York: Cambridge University Press.Google Scholar
  65. Treisman, A. M. (1985). Preattentive processing in vision.Computer Vision, Graphics & Imaging Processing,31, 156–177.CrossRefGoogle Scholar
  66. Treisman, A. [M.] (1996). The binding problem.Current Opinion in Neurobiology,6, 171–178.PubMedCrossRefGoogle Scholar
  67. Treisman, A. [M.], &Gelade, G. (1980). A feature-integration theory of attention.Cognitive Psychology,12, 97–136.PubMedCrossRefGoogle Scholar
  68. Treisman, A. [M.], &Gormican, S. (1988). Feature analysis in early vision: Evidence from search asymmetries.Psychological Review,95, 15–48.PubMedCrossRefGoogle Scholar
  69. Treisman, A. [M.], &Sato, S. (1990). Conjunction search revisited.Journal of Experimental Psychology: Human Perception & Performance,16, 459–478.CrossRefGoogle Scholar
  70. Yamaguchi, S., Yamagata, S., &Kobayashi, S. (2000). Cerebral asymmetry of the “top-down” allocation of attention to global and local features.Journal of Neuroscience,20, RC72.PubMedGoogle Scholar
  71. Zelinsky, G. J., Rao, R. P. N., Hayhoe, M. M., &Ballard, D. H. (1997). Eye movements reveal the spatiotemporal dynamics of visual search.Psychological Sciences,8, 448–453.CrossRefGoogle Scholar
  72. Zelinsky, G. J., &Sheinberg, D. L. (1997). Eye movements during parallel-serial visual search.Journal of Experimental Psychology: Human Perception & Performance,23, 244–262.CrossRefGoogle Scholar

Copyright information

© Psychonomic Society, Inc. 2004

Authors and Affiliations

  1. 1.Cognitive Science LaboratoryCatholic University of AmericaWashington, DC

Personalised recommendations