Perception & Psychophysics

, Volume 65, Issue 8, pp 1285–1295 | Cite as

Reversible-figure perception: Mechanisms of intentional control



Observers can exert a degree of intentional control over the perception of reversible figures. Also, the portion of the stimulus that is selected for primary or enhanced processing (focal-feature processing) influences how observers perceive a reversible figure. Two experiments investigated whether voluntary control over perception of a Necker cube could be explained in terms of intentionally selecting appropriate focal features within the stimulus for primary processing. In Experiment 1, varying observers’ intentions and the focus of primary processing produced additive effects on the percentage of time that one alternative was perceived. In Experiment 2, the effect of varying the focus of primary processing was eliminated by the use of a small cube, but the effect of intention was unaltered. The results indicate that intentional control over perception can be exerted independently of focal-feature processing, perhaps by top-down activation or priming of perceptual representations. The results also reveal the limits of intentional control.


  1. Anstis, S., Verstraten, F., &Mather, G. (1998). The motion aftereffect.Trends in Cognitive Sciences,2, 111–117.CrossRefPubMedGoogle Scholar
  2. Attneave, F. (1971). Multistability in perception.Scientific American,225(6), 62–71.CrossRefGoogle Scholar
  3. Babich, S., &Standing, L. (1981). Satiation effects with reversible figures.Perceptual & Motor Skills,52, 203–210.Google Scholar
  4. Boring, E. G. (1942).Sensation and perception in the history of experimental psychology. New York: Appleton Century.Google Scholar
  5. Braddick, O., Campbell, F. W., &Atkinson, J. (1978). Channels in vision: Basic aspects. In R. Held, H. W. Leibowitz, & H. L. Teuber (Eds.),Handbook of sensory physiology: Vol. 8. Perception (pp. 3–39). Berlin: Springer-Verlag.Google Scholar
  6. Dugger, J. G., &Courson, R. W. (1968). Effect of angle of retinal vision on the rate of fluctuation of the Necker cube.Perceptual & Motor Skills,26, 1239–1242.Google Scholar
  7. Ellis, S. R., &Stark, L. (1978). Eye movements during viewing of Necker cubes.Perception,7, 575–581.PubMedCrossRefGoogle Scholar
  8. Eriksen, B. A., &Eriksen, C. W. (1974). Effects of noise letters upon the identification of a target letter in a nonsearch task.Perception & Psychophysics,16, 143–149.Google Scholar
  9. Eriksen, C. W., &Hoffman, J. E. (1972). Temporal and spatial characteristics of selective encoding from visual displays.Perception & Psychophysics,12, 201–204.Google Scholar
  10. Gale, A. G., &Findlay, J. M. (1983). Eye movement patterns in viewing ambiguous figures. In R. Groner, C. Menz, D. F. Fisher, & R. A. Monty (Eds.),Eye movements and psychological functions: International views (pp. 145–168). Hillsdale, NJ: Erlbaum.Google Scholar
  11. García-Pérez, M. A. (1989). Visual inhomogeneity and eye move1294 TOPPINO ments in multistable perception.Perception & Psychophysics,46, 397–400.Google Scholar
  12. García-Pérez, M. A. (1992). Eye movements and perceptual multistability. In E. Chekaluk & K. R. Llewellyn (Eds.),The role of eye movements in perceptual processes (pp. 73–109). Amsterdam: Elsevier.CrossRefGoogle Scholar
  13. Georgiades, M. S., &Harris, J. P. (1997). Biasing effects in ambiguous figures: Removal or fixation of critical features can affect perception.Visual Cognition,4, 383–408.CrossRefGoogle Scholar
  14. Girgus, J. J., Rock, I., &Egatz, R. (1977). The effect of knowledge of reversibility on the reversibility of ambiguous figures.Perception & Psychophysics,22, 550–556.Google Scholar
  15. Gregory, R. L. (1970).The intelligent eye. New York: McGraw-Hill.Google Scholar
  16. He, S., Cavanagh, P., &Intriligator, J. (1996). Attentional resolution and the locus of visual awareness.Nature,383, 334–337.PubMedCrossRefGoogle Scholar
  17. Hochberg, J. (1968). In the mind’s eye. In R. N. Haber (Ed.),Contemporary theory and research in visual perception (pp. 309–331). New York: Holt, Rinehart & Winston.Google Scholar
  18. Hochberg, J., &Peterson, M. A. (1987). Piecemeal perception and cognitive components in object perception: Perceptually coupled responses to moving objects.Journal of Experimental Psychology: General,116, 370–380.CrossRefGoogle Scholar
  19. Howard, I. P. (1961). An investigation of a satiation process in reversible perspective of revolving skeletal shapes.Quarterly Journal of Experimental Psychology,13, 19–33.CrossRefGoogle Scholar
  20. Intriligator, J., &Cavanagh, P. (2001). The spatial resolution of visual attention.Cognitive Psychology,43, 171–216.PubMedCrossRefGoogle Scholar
  21. Kawabata, N. (1986). Attention and depth perception.Perception,15, 563–572.PubMedCrossRefGoogle Scholar
  22. Kawabata, N., Yamagami, K., &Noaki, M. (1978). Visual fixation points and depth perception.Vision Research,18, 853–854.PubMedCrossRefGoogle Scholar
  23. Kohler, W., &Wallach, H. (1944). Figural aftereffects: An investigation of visual processes.Proceedings of the American Philosophical Society,88, 269–357.Google Scholar
  24. Leopold, D. A., &Logothetis, N. K. (1999). Multistable phenomena: Changing views in perception.Trends in Cognitive Sciences,3, 254–264.PubMedCrossRefGoogle Scholar
  25. Liebert, R. M., &Burk, B. (1985). Voluntary control of reversible figures.Perceptual & Motor Skills,61, 1307–1310.Google Scholar
  26. Long, G. M., Toppino, T. C., &Kostenbauder, J. F. (1983). As the cube turns: Evidence for two processes in the perception of a dynamic reversible figure.Perception & Psychophysics,34, 29–38.Google Scholar
  27. Long, G. M., Toppino, T. C., &Mondin, G. W. (1992). Prime time: Fatigue and set effects in the perception of reversible figures.Perception & Psychophysics,52, 609–616.Google Scholar
  28. Magnussen, S., &Johnsen, T. (1986). Temporal aspects of spatial adaptation: A study of the tilt aftereffect.Vision Research,26, 661–672.PubMedCrossRefGoogle Scholar
  29. Palmer, S. E., &Bucher, N. M. (1981). Configural effects in perceived pointing of ambiguous triangles.Journal of Experimental Psychology: Human Perception & Performance,7, 88–114.CrossRefGoogle Scholar
  30. Pelton, L. H., &Solley, C. M. (1968). Acceleration of reversals of a Necker cube.American Journal of Psychology,81, 585–588.PubMedCrossRefGoogle Scholar
  31. Peterson, M. A., &Gibson, B. S. (1991). Directing spatial attention within an object: Altering the functional equivalence of shape descriptions.Journal of Experimental Psychology: Human Perception & Performance,17, 170–182.CrossRefGoogle Scholar
  32. Peterson, M. A., Harvey, E. M., &Weidenbacher, H. J. (1991). Shape recognition contributions to figure-ground reversal: Which route counts?Journal of Experimental Psychology: Human Perception & Performance,17, 1075–1089.CrossRefGoogle Scholar
  33. Peterson, M. A., &Hochberg, J. (1983). Opposed-set measurement procedure: A quantitative analysis of the role of local cues and intention in form perception.Journal of Experimental Psychology: Human Perception & Performance,9, 183–193.CrossRefGoogle Scholar
  34. Pheiffer, C. H., Eure, S. B., &Hamilton, C. B. (1956). Reversible figures and eye-movements.American Journal of Psychology,69, 452–455.PubMedCrossRefGoogle Scholar
  35. Phillipson, O. T., &Harris, J. P. (1984). Effects of chlorpromazine and promazine on the perception of some multi-stable visual figures.Quarterly Journal of Experimental Psychology,36A, 291–308.Google Scholar
  36. Posner, M. I. (1980). Orienting of attention.Quarterly Journal of Experimental Psychology,32, 3–25.PubMedCrossRefGoogle Scholar
  37. Previc, F. H. (1990). Functional specialization in the lower and upper visual fields in humans: Its ecological origins and neurophysiological implications.Behavioral & Brain Sciences,13, 519–575.Google Scholar
  38. Pritchard, R. M. (1958). Visual illusions viewed as stabilized retinal images.Quarterly Journal of Experimental Psychology,10, 77–81.CrossRefGoogle Scholar
  39. Regan, D. (1982). Visual information channeling in normal and disordered vision.Psychological Review,89, 407–444.PubMedCrossRefGoogle Scholar
  40. Rock, I. (1975).An introduction to perception. New York: Macmillan.Google Scholar
  41. Rock, I., &Mitchener, K. (1992). Further evidence of failure of reversal of ambiguous figures by uninformed subjects.Perception,21, 39–45.PubMedCrossRefGoogle Scholar
  42. Ruggieri, V., &Fernandez, M. F. (1994). Gaze orientation in perception of reversible figures.Perceptual & Motor Skills,78, 299–303.Google Scholar
  43. Seth, S., &Reddy, N. Y. (1979). Manifest anxiety and perceptual shift in adolescents.Child Psychiatry Quarterly,12, 17–24.Google Scholar
  44. Spitz, H. H., &Lipman, R. S. (1962). Some factors affecting Necker cube reversal rate.Perceptual & Motor Skills,15, 611–625.CrossRefGoogle Scholar
  45. Struber, D., &Stadler, M. (1999). Differences in top-down influences on the reversal rate of different categories of reversible figures.Perception,28, 1185–1196.PubMedCrossRefGoogle Scholar
  46. Suzuki, S., &Peterson, M. A. (2000). Multiplicative effects of intention on the perception of bistable apparent motion.Psychological Science,11, 202–209.PubMedCrossRefGoogle Scholar
  47. Toppino, T. C., &Long, G. M. (1987). Selective adaptation with reversible figures: Don’t change that channel.Perception & Psychophysics,42, 37–48.Google Scholar
  48. Tsal, Y., &Kolbet, L. (1985). Disambiguating ambiguous figures by selective attention.Quarterly Journal of Experimental Psychology,37A, 25–37.Google Scholar
  49. Virsu, V. (1975). Determination of perspective reversals.Nature,257, 786–787.PubMedCrossRefGoogle Scholar
  50. von Grünau, M. W., Wiggin, S., &Reed, M. (1984). The local character of perspective organization.Perception & Psychophysics,35, 319–324.Google Scholar
  51. Washburn, M. F., Mallay, H., &Naylor, A. (1931). The influence of the size of an outline cube on the fluctuations of its perspective.American Journal of Psychology,43, 484–489.CrossRefGoogle Scholar

Copyright information

© Psychonomic Society, Inc. 2003

Authors and Affiliations

  1. 1.Department of PsychologyVillanova UniversityVillanova

Personalised recommendations